Skip to main content
Neural Regeneration Research logoLink to Neural Regeneration Research
. 2022 Oct 11;18(7):1591–1600. doi: 10.4103/1673-5374.355979

The circ_0002538/miR-138-5p/plasmolipin axis regulates Schwann cell migration and myelination in diabetic peripheral neuropathy

Yu-Tian Liu 1,#, Zhao Xu 1,#, Wei Liu 2, Sen Ren 1, He-Wei Xiong 1, Tao Jiang 1, Jing Chen 1, Yu Kang 1, Qian-Yun Li 1, Zi-Han Wu 1, Hans-GüNther Machens 3, Xiao-Fan Yang 1,*, Zhen-Bing Chen 1,*
PMCID: PMC10075099  PMID: 36571367

graphic file with name NRR-18-1591-g001.jpg

Key Words: circ_0002538, circRNA sequencing, competing endogenous RNAs, demyelination, diabetic peripheral neuropathy, miR-138-5, myelination, plasmolipin, protein profiling, Schwann cells

Abstract

Circular RNAs (circRNAs) play a vital role in diabetic peripheral neuropathy. However, their expression and function in Schwann cells in individuals with diabetic peripheral neuropathy remain poorly understood. Here, we performed protein profiling and circRNA sequencing of sural nerves in patients with diabetic peripheral neuropathy and controls. Protein profiling revealed 265 differentially expressed proteins in the diabetic peripheral neuropathy group. Gene Ontology indicated that differentially expressed proteins were mainly enriched in myelination and mitochondrial oxidative phosphorylation. A real-time polymerase chain reaction assay performed to validate the circRNA sequencing results yielded 11 differentially expressed circRNAs. circ_0002538 was markedly downregulated in patients with diabetic peripheral neuropathy. Further in vitro experiments showed that overexpression of circ_0002538 promoted the migration of Schwann cells by upregulating plasmolipin (PLLP) expression. Moreover, overexpression of circ_0002538 in the sciatic nerve in a streptozotocin-induced mouse model of diabetic peripheral neuropathy alleviated demyelination and improved sciatic nerve function. The results of a mechanistic experiment showed that circ_0002538 promotes PLLP expression by sponging miR-138-5p, while a lack of circ_0002538 led to a PLLP deficiency that further suppressed Schwann cell migration. These findings suggest that the circ_0002538/miR-138-5p/PLLP axis can promote the migration of Schwann cells in diabetic peripheral neuropathy patients, improving myelin sheath structure and nerve function. Thus, this axis is a potential target for therapeutic treatment of diabetic peripheral neuropathy.

Introduction

Diabetes mellitus is a major global health concern affecting more than 9% of the global population, and this is expected to increase over time (Feldman et al., 2019a). The most common complication of diabetes mellitus is diabetic peripheral neuropathy (DPN), which affects approximately 50% of people with diabetes during their lifetime (Pop-Busui et al., 2017). DPN is the key initiating factor of diabetic foot conditions that can lead to nontraumatic lower limb amputation, which can seriously reduce the quality of life and patient life expectancy (Feldman et al., 2019a; Selvarajah et al., 2019). DPN is characterized by pain, paresthesia, and loss of sensation, and is associated with axon atrophy, demyelination, weakened regenerative potential, and the loss of peripheral nerve fibers (Farmer et al., 2012). Although several therapeutic approaches have been introduced in clinical practice, the current DPN treatment has only been found to relieve some symptoms with limited effects (Singh et al., 2014). Current studies have found that the occurrence and development of DPN are largely caused by hyperglycemia, insulin deficiency, and dyslipidemia. However, the molecular mechanisms that lead to demyelination and neurological dysfunction remain unclear. Therefore, clarification of the molecular mechanism that promotes DPN initiation and development has important clinical significance and may lead to more effective treatments for DPN.

Circular RNAs (circRNAs) are a recently characterized type of noncoding RNA. They play a key role in the occurrence and development of many diseases and are highly evolutionarily conserved, stable, and tissue-specific (Zhang et al., 2019; Shi et al., 2020). circRNAs are involved in the modification of transcription or posttranscriptional gene expression, and their mode of action includes protein binding, translation, and microRNA (miRNA) sponges (Wang et al., 2020a). circRNA sequencing in spinal cord tissue and dorsal root ganglia of DPN mice revealed 135 and 15 differentially expressed circRNAs (Zhang et al., 2020; He et al., 2021), respectively, which were associated with the occurrence and development of neuronal abnormalities. However, the characteristics and functions of circRNAs in Schwann cells (SCs) in DPN remain unclear.

In the present study, we used circRNA sequencing and protein profiling analyses of nerve tissues from humans with or without DPN to explore the onset and developmental mechanisms of DPN. circ_0002538 is a circRNA derived from Kelch-like family member 8 (KLHL8) with downregulated expression in circRNA sequencing of nerves from patients with DPN, whose function has not previously been characterized. Moreover, we investigated the role of circ_0002538 in the development of DPN in vitro and in vivo.

Methods

Ethics statement

This study was approved by the Ethics Committee of Tongji Medical College, Huazhong University of Science and Technology (approval No. IEC 2021-S085, approved on March 31, 2021), and informed consent was obtained from each patient. All animal study protocols were approved by the Animal Care Committee of Huazhong University of Science and Technology (No. 2020-S2665, approved on December 1, 2020). The timeline of the experiment was shown in Figure 1.

Figure 1.

Figure 1

Schematic diagram illustrating the timeline of the experiment.

DPN: Diabetic peripheral neuropathy; STZ: streptozotocin.

Patient tissue specimens

Sural nerve tissues and skin tissues were collected from 29 patients who underwent lower limb amputation at the Union Hospital and Liyuan Hospital of Huazhong University of Science and Technology from 2014 to 2020. The DPN diagnoses were based on a history of diabetes, typical symptoms, abnormal nerve conduction, and the exclusion of neuropathy with causes other than diabetes (Pop-Busui et al., 2017; Feldman et al., 2019b). For diabetic patients without nerve conduction data, we confirmed the diagnosis of DPN by performing a skin biopsy to assess intraepidermal nerve fiber density and utilizing transmission electron microscopy (HT7700, Hitachi, Hitachi, Japan) to confirm neuropathy in the peripheral nerves (Holland et al., 1997). Individuals diagnosed with the following diseases were excluded from the study: neuropathic deficits caused by other diseases, severe peripheral vascular disease, a history of major amputation, other serious chronic medical diseases, or alcohol and drug abuse.

Under a microscope, the epineurium of the sural nerve tissues in the distal calf was stripped, and the nerve bundles were drawn out and immediately snap-frozen in liquid nitrogen for further research. Skin tissues 10 cm above the lateral malleolus were collected for immunofluorescence staining of protein gene product 9.5. The intraepidermal nerve fiber density was calculated according to a previously described method (Vlcková-Moravcová et al., 2008).

Protein profiling analysis

Total proteins were extracted from three pairs of sural nerves from the patients with DPN and individuals without DPN using a protein lysis solution (4% sodium dodecyl sulfate, 100 mM Tris HCl, pH 7.6). We then performed proteomic profiling using the tandem mass tag labeling system (Thermo Fisher Scientific, Waltham, MA, USA). We used a Q Exactive Plus high-resolution mass spectrometer (Thermo Fisher Scientific) to perform tandem mass tag quantitative proteomic analysis, and the software programs Mascot 2.6 (Matrix Science, Boston, MA, USA) and Proteome Discoverer 2.1 (Thermo Fisher Scientific) for library identification and quantitative analysis, respectively (false discovery rate < 0.01).

Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis

The differentially expressed proteins or mRNAs were further analyzed via Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for functional prediction. We used GO analysis to annotate the cell components and biological processes based on the GO resource (http://www.geneontology.org), and pathway analysis to explore the enrichment of different pathways based on the KEGG database (http://www.genome.jp/kegg). The protein–protein interaction network analysis was based on the STRING database (https://string-db.org) and visualized using Cytoscape 3.7.2 (Shannon et al., 2003).

circRNA sequencing analysis

The sequencing libraries were constructed as described in a previous report (Lu et al., 2020). Briefly, the total RNA of the aforementioned three pairs of peripheral nerves was prepared using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The RNA integrity number was evaluated using the Agilent 2200 TapeStation (Agilent Technologies, Eugene, OR, USA), and all RNA samples with an RNA integrity number above 7.0 were subjected to further circRNA sequencing analysis. Before constructing the circRNA sequencing libraries, we used the Epicentre Ribo-Zero rRNA Removal Kit (Illumina, San Diego, CA, USA) to remove ribosomal RNA from the RNA samples, and incubated 40 U RNase R (Epicenter, Madison, WI, USA) with the total RNA at 37°C for 3 hours to remove linear RNA. The libraries were sequenced using the HiSeq-3000 sequencing platform, and we examined the differentially expressed circRNA between the sural nerves from patients with DPN and tissues from individuals without DPN using DESeq2 software (v 2.11.40.2; Bioconductor, Inc.).

Cell culture and treatments

We isolated the primary SCs from human sural nerves (three donors were randomly selected from each group), as previously described, to examine the impaired function of SCs from DPN patients (Wang et al., 2020b). Briefly, the sural nerves were cut into 5-mm-long sections after the epineurium had been stripped and predegenerated in SC culture medium for 10 days. Next, the nerve segments were cut into 2-mm3 pieces and transferred to a mixture containing Dulbecco’s modified Eagle’s medium (Thermo Fisher Scientific), 10% fetal calf serum, 0.125% type IV collagenase (Sigma-Aldrich, St. Louis, MO, USA), 1.25 U/mL dispase II (Solaribo, Beijing, China), and 1% penicillin-streptomycin to digest for 18–20 hours. The cells were cultured in SC medium (ScienCell, Carlsbad, CA, USA). The SCs used in the other experiments were purchased from ScienCell Research Laboratories and cultured in SC medium containing 5% fetal calf serum. We added oxidized low-density lipoprotein (ox-LDL, BioVision, Exton, PA, USA) to the culture medium to mimic diabetic conditions. After growing to confluent or subconfluent cell layers, the SCs were cultured for another 6 days to examine plasmolipin (PLLP) expression as previously described (Gillen et al., 1996). SCs were identified via immunofluorescence staining with S100 calcium binding protein B and glial fibrillary acidic protein. HEK293 cells (ACC305, DMSZ, Braunschweig, Lower Saxony, Germany, RRID: CVCL_0045) were cultured in high glucose Dulbecco’s modified Eagle’s medium containing 10% fetal calf serum and 1% penicillin/streptomycin. The cells were cultured at 37°C in a humidified atmosphere containing 5% CO2.

Real-time polymerase chain reaction

We extracted the total RNA from the sural nerves and cells using TRIzol reagent (TaKaRa, Kyoto, Japan). The genomic DNA was isolated using a TIANamp Genomic DNA Kit (TianGen Biotech, Beijing, China) according to the manufacturer’s instructions. The RNA samples were then reverse transcribed into complementary DNA (cDNA) using the PrimeScript™ RT Reagent (TaKaRa, RR036A). We performed real-time polymerase chain reactions (RT-PCRs) using a 7500 Real-time PCR System (Applied Biosystems, Carlsbad, CA, USA) with the Universal SYBR Green Master Mix (4913914001; Roche, Shanghai, China). β-Actin was used as an internal control. The RT-PCR protocol was as follows: one cycle of 95°C for 10 minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. Gene expression was quantified using the 2–ΔΔCt method (Livak and Schmittgen, 2001). For circRNA, the total RNA was reverse transcribed to cDNA using the PrimeScript™ RT reagent kit (TaKaRa, RR037A). We used convergent and divergent primers to detect the expression of linear RNA and circRNA transcripts. The primers are shown in Additional Table 1.

Additional Table 1.

Primers used in this study

Name Sequence (5’-3’)
circRNA
hsa_circ_0004001 Forward: TGACGAACATCACAGTACATTGG
Reverse: AAGGTGCGTTCATCACGTTTT
hsa_circ_0001847 Forward: ACAATCAGATGGCACCAGGGA
Reverse: TCCAAGCCCCTTTGAGTCCAT
hsa_circ_0000137 Forward: TTGAGGCTGTTGTTCAGAGTGT
Reverse: ACAGAGTCATCCCCAGAAGCA
hsa_circ_0005019 Forward: CTGGAGCCTGGTGAGAACTT
Reverse: CAGATGTGTCAGAACCCTCACT
hsa_circ_0000711 Forward: AGGTAGCCGAGGGGCAGTAA
Reverse: GTGGTAAGCAAAGTGGTGTGGT
hsa_circ_0001897 Forward: GCTGGCCTTGGGAGGTTATTTA
Reverse: GCCCACTGTCATCCAAGAAGAA
hsa_circ_0004896 Forward: CTAACCACCGCCGAGAACGA
Reverse: TGTCACCTGGGCGGAAACTC
hsa_circ_0006156 Forward: AAGGGCCATAGTGGTGGAAGT
Reverse: GCTTGGGGGATAACACTCAGGA
hsa_circ_0000471 Forward: CACACAAAGACCTCCTCCTCC
Reverse: GCTTGTTTTGCTGTACCCATCT
hsa_circ_0001647 Forward: GTCTGAGTTTACCTGAAAGGGATA
Reverse: ATGCCTGTACTTCATCACCTG
hsa_circ_0087960 Forward: GTAGTTCTGGGGCGTGTTCA
Reverse: TAGGTGGATGGGGAGCTTCA
hsa_circ_0004374 Forward: ACACCAGCATACTTTGCCTCA
Reverse: CACATTTAGGACAGCGCAGC
hsa_circ_0020433 Forward: ACAAAGTCATCGCTGCCAAAG
Reverse: CGGCTGAAAGGGAATGAAATGC
hsa_circ_0024604 Forward: AAAAGGCAACAACAGCACCAGC
Reverse: CAAAACCCACTCAACTGCCATTGT
hsa_circ_0005615 Forward: ACCCTTTACCTGGAGCAAACCA
Reverse: TTTGGAGCTGAAACGATGGTGAC
hsa_circ_0040823 Forward: ATCGGAGAAGACGGACAGGT
Reverse: AGTCGGATTCTGTGATGCCA
hsa_circ_0007715 Forward: ACGGAGGCTCCAGAGACTACTA
Reverse: TTGTCTGACGACTTGCCTGC
hsa_circ_0003781 Forward: TGAGTACGACCCCGAGGACA
Reverse: CTCATCGGTGGCAGCGTAGT
hsa_circ_0001824 Forward: AAGTGACGGGATCCGGAAAG
Reverse: TCAGCAGCCAGTTTTTCAATGT
hsa_circ_0002882 Forward: GGGAGAGTTTGGAGCTGTGAT
Reverse: TCCTTCAGCTCTTCACTGATGC
hsa_circ_0001819 Forward: CCTGGTAGGACAAGCGACTCTC
Reverse: GCAGCATGATTTGGTCCCAC
hsa_circ_0008394 Forward: TGAACACTAGTCTGAATGTATACCG
Reverse: ACGAATGAAGCCTCGTGTGG
hsa_circ_0006535 Forward: CATGCTGAGCTTTGCCAGAGAC
Reverse: GCAATCTCCTGTTGGCTGGC
hsa_circ_0002538 Forward: AAAAGGCAACAACAGCACCAGC
Reverse: CAAAACCCACTCAACTGCCATTGT
hsa_circ_0002538 convergent Forward: ACCTTCTGCCTTCTCTCTACCCT
Reverse: GCTGTTGTTGCCTTTTCCCCTT
mRNA (5’-3’)
SERINC5 Forward: GGAGGCTTGGTTTTGATGGCA
Reverse: CCGAGTGTGGCTGTCGATTTT
GJC3 Forward: TTGTGCTTCTGGGTTTGGGGA
Reverse: TGGGAGGCTATCGGTTGCTTT
PLP1 Forward: CATCACCTATGCCCTGACCGT
Reverse: AGGCAATAGACTGGCAGGTGG
PRX Forward: GGTGGCCAAGCTGAACATCCA
Reverse: AGGAGAACTCGACGTCAACAGG
MPZ Forward: AGAGGAGGCTCAGTGCTATGG
Reverse: CAGCTTTGGTGCTTCTGCTGT
KLHL8 Forward: CGTGGAGGAGTTGGCTCTGTT
Reverse: CCTGCTCTTCGCTGACCCATT
GAPDH Forward: ATCCACAGTCTTCTGGGTGGC
Reverse: TCCTGGAACAGCAAAACAAGGC
PLLP Forward: CTTTAACATCAGCGCCACCGTT
Reverse: ACCAAACACGCAAAGAACGAGG
P-Actin Forward: CAGCCTTCCTTCCTGGGCAT
Reverse: GGGCAGTGATCTCCTTCTGCAT
P-Actin-divergent Forward: AAATCGTGCGTGACATTAAGGAGA
Reverse: CATACCCCTCGTAGATGGGCA
U3 Forward: TGTAGAGCACCGAAAACCACG
Reverse: CAGCCAAGCAACGCCAGA
miRNA (5’-3’)
hsa-miR-138-5p AGCTGGTGTTGTGAATCAGG
miR-3714 GAAGGCAGCAGTGCTCCCCTGT
U6 Forward: CTCGCTTCGGCAGCACA
Reverse: AACGCTTCACGAATTTGCGT
miR-138-5p stem-loop RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCGGCCT
Forward: GCGAGCTGGTGTTGTGAATC
Reverse: AGTGCAGGGTCCGAGGTATT
U6 stem-loop RT RT: GTCGTATCGACTGCAGGGTCCGAGGTATTCGCAGTCGATACGACAAAATATG
Forward: AGCACATATACTAAAATTGGAACGAT
Reverse: ACTGCAGGGTCCGAGGTATT

circRNAs: circular RNAs; SERINC5: serine incorporator 5; PLLP: plasmolipin; GJC3: gap junction protein gamma 3; PLP1: proteolipidprotein 1; PRX: periaxin; MPZ: myelin protein zero; KLHL8: Kelch-like family member 8; GAPDH: glyceraldehyde-3-phosphatedehydrogenase; U3: small nucleolar U3 RNA.

Sanger sequencing

We conducted Sanger sequencing to verify the back-splicing position of circ_0002538. The total RNA was extracted from the SCs and reverse transcribed into cDNA. circ_0002538 was amplified with divergent primers and 2× Taq Master Mix (Vazyme, Nanjing, Jiangsu, China) using qPCR. The qPCR protocol was one cycle of 95°C for 5 minutes followed by 34 cycles of 95°C for 30 seconds, 52°C for 30 seconds, and 72°C for 30 seconds. Then, the base sequences of the products were determined using Sanger sequencing and compared with the data in circBase (http://circrna.org/).

Nuclear and cytoplasmic separation assay

To detect the cellular localization of circRNAs, we extracted RNA from nuclear and cytoplasmic fractions using a cytoplasmic and nuclear RNA isolation kit (Norgen Biotek, Ontario, Canada) according to the manufacturer’s protocol. The relative expression levels of circ_0002538 in the nucleus and cytoplasm were detected via RT-PCR. We used GAPDH and U6 small nuclear RNA as internal controls.

Digestion with RNase R

For RNase R digestion, 10 μg of total RNA was incubated with 2 U/μg RNase R (BioVision, Milpitas, CA, USA) at 37°C for 30 minutes. RNAs treated with the same process without RNase R were the mock group. The expression levels of KLHL8 and circ_0002538 were determined via RT-PCR.

Plasmid construction and stable transfection

circ_0002538 cDNA was synthesized by Tsingke Biological Technology (Wuhan, China) and cloned into the GV689 vector (Shanghai GeneChem Co., Ltd., Shanghai, China) to construct overexpression plasmids. Short hairpin RNA (shRNA) for circ_0002538 was designed using the CircInteractome tool and cloned into the GV493 vector (Shanghai GeneChem Co., Ltd.) to construct silencing plasmids. The plasmids for the overexpression and knockdown of PLLP were designed and synthesized by Shanghai Gene Chemical Co., Ltd. Then, the constructed plasmids were packaged into lentivirals (LVs) by Shanghai Gene Chemical Co., Ltd. and cell transfection was performed according to the manufacturer’s instructions. The transfected cells were incubated with 2 μg/mL of puromycin (BIOFOX, Nantong, China) for 5 days, and the surviving cells were used as stable transfectants.

Oligonucleotide transfection

miRNA mimics, miRNA inhibitors, and corresponding negative control oligonucleotides were synthesized by RiboBio (Guangzhou, China). The sequences used are listed in Additional Table 2. Transfection was carried out using a PECTTM CP Transfection kit (RiboBio) with a final concentration of 50 nM for miRNA mimics and 100 nM for miRNA inhibitors, according to the manufacturer’s protocol.

Additional Table 2.

Nucleic acid sequences used in this study

Nucleic acid Sequences (5’-3’)
sh NC Sense: TTCTCCGAACGTGTCACGT
Antisense: ACGTGACACGTTCGGAGAA
sh1 circ_0002538 Sense: GTCACACTCAAGTCACAGCAA
Antisense: TTGCTGTGACTTGAGTGTGAC
sh2 circ_0002538 Sense: ACTCAAGTCACAGCAAACTGT
Antisense: ACAGTTTGCTGTGACTTGAGT
biotin-miR NC TTTGTACTACACAAAAGTACTG
biotin-miR-138-5p mimic AGCTGGTGTTGTGAATCAGGCCG
biotin-circ_0002538 NC GAACTCTGTGATGTCACACTCAAGTCACAGCAAACTGTACAATGGCAG
biotin-circ_0002538 CTGCCATTGTACAGTTTGCTGTGACTTGAGTGTGACATCACAGAGTTC
mimics NC Sense: UUUGUACUACACAAAAGUACUG
Antisense: AAACAUGAUGUGUUUUCAUGAC
miR-138-5p mimics Sense: AGCUGGUGUUGUGAAUCAGGCCG
Antisense: UCGACCACAACACUUAGUCCGGC
Inhibitor miR-NC CAGUACUUUUGUGUAGUACAAA
Inhibitor miR-138-5p AGCTGGTGTTGTGAATCAGG

NC: Normal control; sh circ_0002538: short hairpin RNA for circ_0002538; sh NC: normal control for short hairpin RNA.

Transwell assay

SC migration was determined using a Transwell chamber (8-μm pore size, Corning, Corning city, NY, USA) according to the manufacturer’s protocol. Approximately 2 × 104 cells suspended in 200 μL of serum-free medium were added to the upper chamber, and a total of 650 μL of Schwann medium containing 5% fetal calf serum was added to the lower chamber as a chemical attractant. After a 24-hour incubation period, we evaluated cell migration by counting the number of migrated cells on the lower surface of the chamber in at least five random fields.

Western blot analysis

We tested the expression levels of PLLP protein in SCs and neural tissues via a western blot analysis. The protein was extracted using a radioimmunoprecipitation assay lysis buffer, supplemented with 1% protease inhibitor. Equal amounts of protein (30 μg) were separated in a 10% sodium dodecyl sulfate-polyacrylamide gel and then transferred to polyvinylidene fluoride membranes (Millipore, Darmstadt, Germany). The membranes were blocked in 5% (w/v) bovine serum albumin (Aladdin, Shanghai, China) before incubation with the primary antibodies at 4°C overnight. Then, the membranes were incubated with horseradish peroxidase-conjugated goat anti-rabbit secondary antibody (1:5000, Aspen Biotechnology Co., Ltd., Wuhan, China, Cat# AS1107) for 1 hour at room temperature and visualized using a BioSpectrum Imaging System (UVP, Upland, CA, USA) with the Immobilon ECL substrate kit (Millipore, Darmstadt, Germany). We used primary antibodies specific to PLLP (rabbit, 1:700, Cusabio, Houston, TX, USA, Cat# CSB-PA896501LA01HU). All tests were repeated three times, and the typical images were provided.

RNA pulldown assay

To detect the combination of circRNAs and miRNAs, we performed RNA pulldown assays with biotinylated probes according to the manufacturer’s protocol (MCE, Shanghai, China, Cat# HY-K0208). In brief, the biotinylated probe or nonsense control probe (RiboBio) was incubated with M-280 streptavidin magnetic beads (MCE) at room temperature for 2 hours to generate probe-coated beads. Approximately 1 × 107 SCs were crosslinked with 1% paraformaldehyde and then neutralized with 1.25 M glycine. Next, these cells were harvested, lysed, and incubated with probe-coated magnetic beads at 4°C overnight. After being washed, the RNA complexes bound to the beads were eluted and extracted using an Rneasy Mini Kit (Qiagen, Hilden, Germany). Then, the abundance of circRNA or miRNA was evaluated via RT-PCR.

Dual-luciferase reporter assay

We predicted the binding sites of miR-138-5p targeting circ_0002538 and PLLP using RNAhybrid (Rehmsmeier et al., 2004) and TargetScan (McGeary et al., 2019), respectively. The wild-type or mut-circ_0002538 fragment was cloned into the downstream of the luciferase reporter gene of the pMIR-report vector (Promega, Madison, WI, USA), while wild-type or mut-PLLP fragment was inserted into the downstream of the hRluc (Renilla) reporter gene of the psi-check2 vector (Promega). The corresponding plasmid and miRNA mimic were cotransfected into HEK293T cells (5 × 104) seeded in a 12-well plate using Lipofectamine 2000 (Thermo Fisher Scientific). The firefly and Renilla luciferase activity of the cells was quantified using a Dual Luciferase Reporter System Kit (E1910, Promega) according to the manufacturer’s instructions.

Prediction of miRNAs targeting circ_0002538 or PLLP

We made predictions regarding the miRNAs that target circ_0002538 or PLLP to ascertain the connection between circ_0002538 and PLLP. The prediction process was conducted by RiboBio (Guangzhou, China). For PLLP, miRNAs predicted by at least three databases (miRDB, miRTarBase, miRWalk, and TargetScan) were considered candidates (Dweep et al., 2011; McGeary et al., 2019; Chen and Wang, 2020; Huang et al., 2020). For circ_0002538, miRNAs predicted by at least two databases (RNAhybrid, miRanda, and TargetScan) were considered candidates (Rehmsmeier et al., 2004; McGeary et al., 2019). We used a Venn diagram to find the common miRNAs (Hulsen et al., 2008).

Induction of diabetes

Due to the high similarity to human and the stability in genes, mice were used to explore circ_0002538 function in vivo (Perlman, 2016). Sex is one factor influencing variations in diabetes induction. As estrogen interferes with streptozotocin (STZ) action, female animals are less sensitive to the diabetogenic action of STZ than male animals. Further, male mice are more commonly used in neuroscience research (Beery and Zucker, 2011). As a result, we chose to use male animals for our study. Compared with other age groups, rodents aged 8–9 weeks show maximal induction of diabetes (Goyal et al., 2016). Thus, we used rodents in this age group. The induction of diabetes was conducted as previously described (Wang et al., 2020b). Briefly, a total of 60 male (8-week-old) C57BL/6J mice (specific-pathogen-free level, SiPeiFu, Beijing, China, SCXK2019-0010) were intraperitoneally injected with STZ (Sigma-Aldrich) at a dose of 50 mg/kg for 5 consecutive days. Subsequently, 45 mice had fasting blood glucose levels of 16.7 mM or higher and were thus diagnosed with diabetes (Wang et al., 2020b). Forty mice with significantly increased mechanical and thermal thresholds were diagnosed with DPN (Fan et al., 2020). We randomly selected one side of the sciatic nerve to be injected with circ_0002538 (circ_0002538 group) and injected the other side with LV-vector (vehicle group, n = 40).

Surgery and lentiviral vector injection

We injected a LV-vector into the sciatic nerve of the mice with DPN, as previously described (Tannemaat et al., 2008). Briefly, after exposure and isolation of the sciatic nerve, 2.5 µL of lentiviral solution (6 × 106 TU LV-circ_0002538 or LV-GFP vector) was injected into the distal peroneal and tibial branches of the sciatic nerve through the epineurium using a 10-µL Hamilton syringe (Hamilton Co., Reno, NV, USA). Fast Green (Sigma-Aldrich) at a final concentration of 0.1% was added to the lentiviral solution to monitor the injection process and ensure that there was no obvious leakage. A 2.5-µL lentiviral solution containing 6 × 106 TU LV-sh-PLLP or LV-vector was injected into the sciatic nerve of normal mice to determine the role of PLLP. The epineurium at the injection site was repaired with 10-0 nylon sutures under an operating microscope (Xintian Medical Instrument Co., LTD, Zhenjiang, China).

Behavioral testing and electrophysiology

Eight weeks after diabetic induction, we assessed thermal and mechanical nociceptive thresholds via double-blind trials. Before the nociceptive behavior test, the mice were acclimated to the environment for at least half an hour. Mechanical allodynia was assessed using von Frey filaments (Danmic Aesthesio, Campbell, CA, USA), as described previously (Xu et al., 2015; Pan et al., 2019). A brisk withdrawal or flinching of the paw was considered a positive response. The inter-test interval between the two sides of the plantar hind paw was more than 15 minutes, and the 50% force withdrawal threshold was determined for the plantar hind paws using the “up-and-down” method (Chaplan et al., 1994). The thermal nociceptive threshold was assessed using the hot plate test (Masocha et al., 2016). A mouse was placed in a Plexiglas cylinder on a hot plate (Model 7280, Ugo Basile, Gemonio, Italy), and the time required for the stimulus to elicit behavioral changes (such as paw licking, stomping, and withdrawal of the hindpaw) was recorded.

At 8 weeks post-surgery, we evaluated the nerve conduction velocity of the sciatic nerve as a sign of DPN. The sciatic nerve conduction velocity was measured via orthodromic recording techniques, as described previously (Ii et al., 2005; Baum et al., 2016; Wang et al., 2020b). The sensory nerve conduction velocity and motor nerve conduction velocity were calculated using an electromyograph (Nicolet, Madison, WI, USA) according to a previous method (Ii et al., 2005).

Hematoxylin and eosin staining, immunofluorescence analysis

We conducted hematoxylin and eosin (HE) staining to evaluate the intraepidermal nerve fiber density of skin samples from diabetic and non-diabetic individuals. The samples were collected and fixed in paraformaldehyde (4%) within 2 hours of amputation, then dehydrated and embedded in paraffin. Four-micron-thick slices of skin were prepared and subjected to HE (Bioyear, Wuhan, China) to examine subcutaneous nerves in the skin.

We used protein gene product 9.5 to evaluate the number of subcutaneous nerves in the skin samples. Glial fibrillary acidic protein and S100 calcium binding protein B were used to characterize primary SCs extracted from the sural nerves. We used myelin protein zero (MPZ) to locate SCs in the sciatic nerves of the DPN mice. The mice were sacrificed 8 weeks after the operation, and the bioluminescence of green fluorescent protein (GFP)-expressing cells was detected via fluorescence microscopy (Olympus, Tokyo, Japan). Then, the sciatic nerve tissues were collected for morphological analysis. For immunofluorescence analyses, we incubated primary antibodies against protein gene product 9.5 (rabbit,1:300, Proteintech, Wuhan, China, Cat# 14730-1-AP, RRID: AB_2210497), glial fibrillary acidic protein (rabbit, 1:400, Abcam, Carlsbad, CA, USA, Cat# ab68428, RRID: AB_1209224), S100 calcium binding protein B (rabbit, 1:200, Abcam, Cat# ab52642, RRID: AB_882426), and MPZ (rabbit, 1:200, Abcam, Cat# ab183868, RRID: AB_2895675) overnight at 4°C. On the second day, we incubated goat anti-rabbit secondary antibody (Fluor® 488, 1:400, Abcam, Cat# ab150077) at 37°C for 1 hour. We used 2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride (Biosharp, Wuhan, China, Cat# BL105A) to stain the cell nuclei. Fifteen-micrometer-thick frozen sections of nerve tissues were stained with MPZ. Images were obtained using a fluorescence microscope (Olympus, Tokyo, Japan), with at least three visual fields for each sample.

Transmission electron microscopy

The collected nerves were cut into 5-mm long sections, prefixed in 2.5% glutaraldehyde for 30 minutes, and then postfixed in 1% osmium tettroxide for 1 hour. After dehydration and embedding in epoxy resin, ultrathin sections (60 µm) were prepared and stained with uranyl acetate and lead citrate. Images were captured under a transmission electron microscope (HT7700, Hitachi), and 15 random images were captured for each sample.

Statistical analysis

According to previous methods (Charan and Kantharia, 2013), we determined a minimum sample size of 35 mice. Considering the potential for unexpected death in the experiment and the failure of the STZ-induced diabetes model, we used a sample size of 60.

The data are expressed as the mean ± standard deviation (SD), median (interquartile range (IQR)), or number (%). P values were obtained using the paired t-test, independent-samples t-test, or Fisher’s exact test (normal distribution) combined with the Mann-Whitney U test (nonnormal distribution) or one-way analysis of variance with Tukey’s post hoc test (more than two groups). P < 0.05 was considered significant, and all statistical analyses were performed using Graphpad Prism 8.0 (GraphPad Software, San Diego, CA, USA, www.graphpad.com).

Results

Characteristics of patients and confirmation of DPN

Twenty-nine patients from two tertiary teaching hospitals were recruited for the study. The median age of the DPN group was 60.0 years (IQR: 56.0–67.0 years) and that of the non-DPN group was 63.5 years (IQR: 55.75–65.0 years). The calf skin and sural nerve were intact in all patients when undergoing amputation. Detailed patient information is provided in Additional Table 3. Because some of the patients had not undergone nerve conduction studies, which is the gold standard for diagnosing DPN, we attempted to verify the diagnosis using other indicators. HE staining revealed a decreased number of subcutaneous nerves in the skin of the lateral malleolus in the DPN group (Additional Figure 1A (1.7MB, tif) and B (1.7MB, tif) ), which was confirmed by protein gene product 9.5 staining of axons (Additional Figure 1C (1.7MB, tif) and D (1.7MB, tif) ). Furthermore, the numbers of axons and intact myelin sheaths were decreased in the nerves of the DPN group, as shown by transmission electron microscopy (Additional Figure 1E (1.7MB, tif) and F (1.7MB, tif) ). We thus confirmed DPN in the collected diabetic peripheral nerves.

Additional Table 3.

Basic characteristics of patients included in the study

Variables Non-diabetic donators Diabetic donators P-value
Number 14 15 NA
Age (yr) 63.5 (55.75-65.0) 60.0 (56.0-67.0) 0.78
Female [n (%)] 4 (29) 4 (27) NA
BMI (kg/m2) 24.22 (23.35-26.23) 24.36 (23.1-25.265) 0.55
SBP (mmHg) 133.5 (123.75-140) 138 (126-150.5) 0.27
DBP (mmHg) 78.5 (73.5-84.25) 82 (70.5-88) 0.82
FBG (mM) 5.8 (5.49-6.345) 11.3 (8.1-14.375) <0.0001
HbA1c (%) NA 7.2 (6.8-7.35) NA
Total cholesterol (mM) 4.165 (3.52-4.72) 3.66 (3.14-5.32) 0.61
Triglyceride (mM) 1.29 (1.09-1.565) 1.39 (1.11-1.56) 0.91
Creatinine (^M) 67.4 (47.4-76.5) 71.8 (67.3-96.2) 0.07
BUN (mM) 5.27 (3.56-6.27) 5.49 (4.15-7.29) 0.31
HDL-C (mM) 1.09 (0.765-1.16) 0.79 (0.72-0.87) 0.40
LDL-C (mM) 2.69 (1.96-3) 2.56 (1.58-3.93) 0.42

Data are median (IQR) or number (%), unless otherwise specified. P-values comparing patients with or without DPN were obtained by the independent-samples t-test or Fisher’s exact test. BMI: Body mass index; BUN: blood urea nitrogen; DBP: diastolic blood pressure; FBG: fasting blood glucose; HbA1c: glycated hemoglobin; HDL-C: high-density lipoprotein cholesterol; IQR: interquartile range; LDL-C: low-density lipoprotein cholesterol; NA: not applicable; SBP: systolic blood pressure.

Impaired myelination and SC migration in the peripheral nerves of the DPN group

Protein profiling analyses were performed on three pairs of peripheral nerves in the DPN and non-DPN groups. A total of 5353 proteins were identified, and 265 proteins were significantly [P < 0.05, |fold change (FC)| ≥ 1.3] differentially expressed in the DPN group (Additional Table 4 (452KB, pdf) ), as shown by the hierarchical cluster analysis (Figure 2A). GO cellular component analysis indicated that the differentially expressed proteins were mainly found in the mitochondrion and myelin sheath (Figure 2B and Additional Table 5). GO biological process analysis showed that 390 terms were significantly enriched, among which myelination was potentially related to DPN (Figure 2C and Additional Table 6 (486.4KB, pdf) ). The proteins related to myelination were serine incorporator 5, PLLP, gap junction protein gamma 3, proteolipid protein 1, periaxin, and MPZ. GO molecular function analysis showed significant enrichment in G protein-coupled serotonin receptor binding and protein binding (Figure 2D and Additional Table 7 (555.4KB, pdf) ). KEGG pathway analysis revealed that 77 pathways were significantly enriched, among which oxidative phosphorylation and the glucagon signaling pathways were potentially related to DPN (Figure 2E and Additional Table 8). Figure 2F shows a protein–protein interaction network constructed according to the differentially expressed proteins and showing the interactions among these proteins. These results indicate that abnormal myelination might play an important role in the pathogenesis of DPN.

Figure 2.

Figure 2

Protein profiling analysis and the detection of SC function in DPN.

(A) Hierarchical clustering analyses of differentially expressed proteins in the non-DPN vs. DPN group (n = 3). (B) GO cellular component analysis of differentially expressed proteins. The red dotted box highlights the cellular components of interest. (C) GO biological process analysis of differentially expressed proteins. The red dotted box highlights the biological processes of interest. (D) GO molecular function analysis of differentially expressed proteins. (E) KEGG pathway analysis of differentially expressed proteins. The red dotted box highlights the pathways of interest. (F) The PPI network based on the STRING database showed the interactions between differentially expressed proteins. The green and red nodes represent proteins with decreased and increased expression, respectively. (G, H) Transwell assays indicated that the migrating number of SCs in the diabetic group was lower compared with that in the non-diabetic group. Scale bars: 100 μm. All bar graphs represent the average of three independent replicates, and the error bars are the SD. ***P < 0.001, vs. non-diabetic (independent-sample t-test). DPN: Diabetic peripheral neuropathy; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: protein-protein interaction.

Additional Table 5.

GO cellular component analysis of differentially expressed proteins

Total
Term Candidat Term Total
Candidate e Gene Gene Gene
GO C Term ID GO_C Term Desc GO C Term Level1 GO C Term Level2 Gene Num Num Num Num Rich Ratio P value Q value
GO:0005739 mitochondrion cellular_component organelle 64 255 1926 25187 0.033229 9.47E-18 3.36E-15
GO:0043209 myelin sheath cellular_component cell part 20 255 246 25187 0.081301 9.73E-13 1.73E-10
GO:0005743 mitochondrial inner membrane cellular_component organelle 28 255 565 25187 0.049558 5.14E-12 6.08E-10
GO:0070062 extracellular exosome cellular_component organelle 73 255 3513 25187 0.02078 7.01E-10 6.22E-08
GO:0008021 synaptic vesicle cellular_component organelle 14 255 162 25187 0.08642 1.21E-09 8.61E-08
GO:0016020 membrane cellular_component membrane 141 255 9539 25187 0.014781 1.08E-08 6.37E-07
GO:0005741 mitochondrial outer membrane cellular_component organelle 15 255 244 25187 0.061475 3.24E-08 1.64E-06
GO:0030667 secretory granule membrane cellular_component organelle 10 255 144 25187 0.069444 2.22E-06 9.85E-05
GO:0070821 tertiary granule membrane cellular_component organelle 8 255 97 25187 0.082474 6.57E-06 2.59E-04
GO:0070469 respiratory chain cellular_component membrane 6 255 61 25187 0.098361 3.54E-05 0.001256
GO:0005751 mitochondrial respiratory chain cellular_component organelle 4 255 22 25187 0.181818 6.50E-05 0.002099
GO:0005737 cytoplasm cellular_component cell part 115 255 8450 25187 0.013609 7.81E-05 0.002309
GO:0005886 plasma membrane cellular_component membrane 91 255 6315 25187 0.01441 9.80E-05 0.002676
GO:0061617 MICOS complex cellular_component organelle 255 10 25187 0.3 1.17E-04 0.002961
GO:0101003 ficolin-1-rich granule membrane cellular_component organelle 6 255 78 25187 0.076923 1.42E-04 0.003356
GO:0005829 cytosol cellular_component cell part 102 255 7429 25187 0.01373 2.03E-04 0.004498
GO:0005747 mitochondrial respiratory chain cellular_component organelle 5 255 60 25187 0.083333 3.55E-04 0.007407
GO:0005759 mitochondrial matrix enclosed lumen cellular_component membrane- 14 255 481 25187 0.029106 4.27E-04 0.008414
GO:0046930 pore complex cellular_component membrane 3 255 18 25187 0.166667 7.48E-04 0.013972
GO:0009986 cell surface cellular_component cell 20 255 900 25187 0.022222 9.01E-04 0.015988
GO:0000275 mitochondrial proton- transporting ATP synthase complex, catalytic core F(1) cellular_component organelle 2 255 5 25187 0.4 0.001001 0.016916
GO:0048471 perinuclear region of cytoplasm cellular_component cell part 20 255 914 25187 0.021882 0.001085 0.01751
GO:0005768 endosome cellular_component organelle 17 255 724 25187 0.023481 0.001211 0.017915
GO:0045202 synapse cellular_component synapse 17 255 723 25187 0.023513 0.001193 0.017915
GO:0001401 mitochondrial sorting and assembly machinery complex cellular_component organelle 2 255 6 25187 0.333333 0.001491 0.019776
GO:0031225 anchored component of membrane cellular_component membrane 7 255 165 25187 0.042424 0.001504 0.019776
GO:0045261 proton-transporting ATP synthase complex, catalytic core F(1) cellular_component membrane 2 255 6 25187 0.333333 0.001491 0.019776
GO:0030054 cell junction cellular_component cell junction 21 255 1016 25187 0.020669 0.001652 0.020218
GO:0030666 endocytic vesicle membrane cellular_component organelle 6 255 123 25187 0.04878 0.001609 0.020218
GO:0042584 chromaffin granule membrane cellular_component organelle 2 255 7 25187 0.285714 0.002073 0.023744
GO:0045254 pyruvate dehydrogenase complex cellular_component cell part 2 255 7 25187 0.285714 0.002073 0.023744
GO:0044306 neuron projection terminus cellular_component cell part 3 255 26 25187 0.115385 0.002245 0.024901
GO:0030315 T-tubule cellular_component cell part 4 255 55 25187 0.072727 0.002334 0.025113
GO:0043190 ATP-binding cassette (ABC) transporter complex cellular_component membrane 2 255 8 25187 0.25 0.002746 0.027854
GO:1990246 uniplex complex cellular_component organelle 2 255 8 25187 0.25 0.002746 0.027854
GO:0030424 axon cellular_component cell part 12 255 466 25187 0.025751 0.002996 0.028964
GO:0042645 mitochondrial nucleoid enclosed lumen cellular_component membrane- 4 255 59 25187 0.067797 0.003019 0.028964
GO:0030658 transport vesicle membrane cellular_component organelle 5 255 98 25187 0.05102 0.003233 0.030206
GO:0042734 presynaptic membrane cellular_component membrane 5 255 100 25187 0.05 0.003527 0.032102
GO:0008091 spectrin cellular_component organelle 2 255 10 25187 0.2 0.004355 0.037706
GO:0032592 integral component of mitochondrial membrane cellular_component organelle 2 255 10 25187 0.2 0.004355 0.037706
GO:0043005 neuron projection cellular_component cell part 2 12 255 496 25187 0.024194 0.004908 0.041487
GO:0005921 gap junction cellular_component cell junction 3 255 35 25187 0.085714 0.005285 0.042658
GO:0014731 spectrin-associated cytoskeleton cellular_component organelle 2 255 11 25187 0.181818 0.005287 0.042658
GO:0005834 heterotrimeric G-protein complex cellular_component membrane 3 255 36 25187 0.083333 0.005723 0.045144
GO:0043204 perikaryon cellular_component cell part 6 255 160 25187 0.0375 0.005897 0.045509
GO:0009898 cytoplasmic side of plasma membrane cellular_component membrane 4 255 76 25187 0.052632 0.007447 0.05508
GO:0031982 vesicle cellular_component organelle 7 255 220 25187 0.031818 0.007313 0.05508
GO:0005586 collagen type III trimer cellular_component extracellular region 1 255 1 25187 1 0.010124 0.061968
GO:0009295 nucleoid cellular_component part nucleoid 1 255 1 25187 1 0.010124 0.061968
GO:0020003 symbiont-containing vacuole cellular_component organelle 1 255 1 25187 1 0.010124 0.061968
GO:0020005 symbiont-containing vacuole membrane cellular_component organelle 1 255 1 25187 1 0.010124 0.061968
GO:0031305 integral component of mitochondrial inner membrane cellular_component organelle 3 255 44 25187 0.068182 0.010005 0.061968
GO:0033017 sarcoplasmic reticulum membrane cellular_component organelle 3 255 43 25187 0.069767 0.009392 0.061968
GO:0034358 plasma lipoprotein particle cellular_component extracellular region part 1 255 1 25187 1 0.010124 0.061968
GO:0034466 chromaffin granule lumen cellular_component organelle 1 255 1 25187 1 0.010124 0.061968
GO:0099189 postsynaptic spectrin- associated cytoskeleton cellular_component organelle 1 255 1 25187 1 0.010124 0.061968
GO:1990031 pinceau fiber cellular_component cell part 1 255 1 25187 1 0.010124 0.061968
GO:0005614 interstitial matrix cellular_component extracellular region 2 255 16 25187 0.125 0.011158 0.064935
GO:0016471 vacuolar proton- transporting V-type ATPase complex cellular_component part organelle 2 255 16 25187 0.125 0.011158 0.064935
GO:0099738 cell cortex region cellular_component cell part 2 255 16 25187 0.125 0.011158 0.064935
GO:0031226 intrinsic component of plasma membrane cellular_component membrane 3 255 47 25187 0.06383 0.011981 0.068601
GO:0005740 mitochondrial envelope cellular_component organelle 2 255 17 25187 0.117647 0.012562 0.070785
GO:0030672 synaptic vesicle membrane cellular_component organelle 4 255 90 25187 0.044444 0.013298 0.073764
GO:0005750 mitochondrial respiratory chain cellular_component organelle 2 255 20 25187 0.1 0.017204 0.092537
GO:0015629 actin cytoskeleton cellular_component organelle 8 255 321 25187 0.024922 0.017011 0.092537
GO:0005922 connexin complex cellular_component membrane 2 255 22 25187 0.090909 0.020641 0.096417
GO:0005954 calcium- and calmodulin-dependent protein kinase complex cellular_component cell part 1 255 2 25187 0.5 0.020146 0.096417
GO:0008076 voltage-gated potassium channel complex cellular_component membrane 4 255 99 25187 0.040404 0.018269 0.096417
GO:0009353 mitochondrial oxoglutarate dehydrogenase complex cellular_component membrane-enclosed lumen 1 255 2 25187 0.5 0.020146 0.096417
GO:0019008 molybdopterin synthase complex cellular_component cell part 1 255 2 25187 0.5 0.020146 0.096417
GO:0032473 cytoplasmic side of mitochondrial outer membrane cellular_component organelle 1 255 2 25187 0.5 0.020146 0.096417
GO:0060987 lipid tube cellular_component protein-containing complex 1 255 2 25187 0.5 0.020146 0.096417
GO:0097180 serine protease inhibitor complex cellular_component protein-containing complex 1 255 2 25187 0.5 0.020146 0.096417
GO:0098688 parallel fiber to Purkinje cell synapse cellular_component synapse 2 255 22 25187 0.090909 0.020641 0.096417
GO:0099160 postsynaptic intermediate filament cytoskeleton cellular_component organelle 1 255 2 25187 0.5 0.020146 0.096417
GO:0005868 cytoplasmic dynein complex cellular_component organelle 2 255 23 25187 0.086957 0.022458 0.103542
GO:0010008 endosome membrane cellular_component membrane 8 255 340 25187 0.023529 0.023063 0.104967
GO:0031201 SNARE complex cellular_component membrane 3 255 62 25187 0.048387 0.02503 0.112479
GO:0034361 very-low-density lipoprotein particle cellular_component extracellular region part 2 255 25 25187 0.08 0.026281 0.116623
GO:0031410 cytoplasmic vesicle cellular_component organelle 14 255 776 25187 0.018041 0.027302 0.119657
GO:0005945 6-phosphofructokinase complex cellular_component cell part 1 255 3 25187 0.333333 0.030068 0.120195
GO:0016021 integral component of membrane cellular_component membrane 86 255 7102 25187 0.012109 0.030133 0.120195
GO:0020018 ciliary pocket membrane cellular_component organelle 1 255 3 25187 0.333333 0.030068 0.120195
GO:0043296 apical junction complex cellular_component cell junction 2 255 26 25187 0.076923 0.028284 0.120195
GO:0045177 apical part of cell cellular_component cell 4 255 113 25187 0.035398 0.028042 0.120195
GO:0060201 clathrin-sculpted acetylcholine transport vesicle membrane cellular_component organelle 1 255 3 25187 0.333333 0.030068 0.120195
GO:0098560 cytoplasmic side of late endosome membrane cellular_component membrane 1 255 3 25187 0.333333 0.030068 0.120195
GO:0099503 secretory vesicle cellular_component organelle 1 255 3 25187 0.333333 0.030068 0.120195
GO:0034774 secretory granule lumen cellular_component organelle 5 255 172 25187 0.02907 0.031036 0.122421
GO:0005753 mitochondrial proton-transporting ATP synthase complex cellular_component organelle 2 255 28 25187 0.071429 0.032467 0.122613
GO:0005783 endoplasmic reticulum cellular_component organelle 27 255 1831 25187 0.014746 0.031832 0.122613
GO:0016459 myosin complex cellular_component organelle 3 255 68 25187 0.044118 0.031747 0.122613
GO:0034704 calcium channel cellular_component membrane 2 255 28 25187 0.071429 0.032467 0.122613
GO:0030425 dendrite cellular_component cell part 11 255 582 25187 0.0189 0.035725 0.132106
GO:0098685 Schaffer collateral - CA1 synapse cellular_component synapse 4 255 122 25187 0.032787 0.035692 0.132106
GO:0005846 nuclear cap binding complex cellular_component cell part 1 255 4 25187 0.25 0.039889 0.134861
GO:0016529 sarcoplasmic reticulum cellular_component organelle 3 255 74 25187 0.040541 0.03931 0.134861
GO:0030027 lamellipodium cellular_component cell part 6 255 245 25187 0.02449 0.039092 0.134861
GO:0030478 actin cap cellular_component organelle 1 255 4 25187 0.25 0.039889 0.134861
GO:0034518 RNA cap binding complex cellular_component protein-containing complex 1 255 4 25187 0.25 0.039889 0.134861
GO:0034686 integrin alphav-beta8 complex cellular_component membrane 1 255 4 25187 0.25 0.039889 0.134861
GO:0042588 zymogen granule cellular_component organelle 1 255 4 25187 0.25 0.039889 0.134861
GO:0060203 clathrin-sculpted glutamate transport vesicle membrane cellular_component organelle 1 255 4 25187 0.25 0.039889 0.134861
GO:0098559 cytoplasmic side of early endosome membrane cellular_component membrane 1 255 4 25187 0.25 0.039889 0.134861
GO:0042613 MHC class II protein complex cellular_component membrane 3 255 76 25187 0.039474 0.042016 0.140714
GO:0045121 membrane raft cellular_component membrane 7 255 317 25187 0.022082 0.043252 0.1435
GO:0031307 integral component of mitochondrial outer membrane cellular_component organelle 2 255 33 25187 0.060606 0.043886 0.144256
GO:0005947 mitochondrial alpha- ketoglutarate dehydrogenase complex cellular_component membrane- enclosed lumen 1 255 5 25187 0.2 0.049611 0.151825
GO:0014704 intercalated disc cellular_component cell junction 3 255 81 25187 0.037037 0.049178 0.151825
GO:0016342 catenin complex cellular_component membrane 2 255 35 25187 0.057143 0.048812 0.151825
GO:0033557 Slx1-Slx4 complex enclosed lumen cellular_component membrane- 1 255 5 25187 0.2 0.049611 0.151825
GO:0070032 synaptobrevin 2-SNAP- 25-syntaxin-1a- complexin I complex cellular_component membrane 1 255 5 25187 0.2 0.049611 0.151825
GO:0070083 clathrin-sculpted monoamine transport vesicle membrane cellular_component organelle 1 255 5 25187 0.2 0.049611 0.151825
GO:0098857 membrane microdomain cellular_component membrane 1 255 5 25187 0.2 0.049611 0.151825
GO:1990726 Lsm1-7-Pat1 complex cellular_component protein-containing complex 1 255 5 25187 0.2 0.049611 0.151825

Additional Table 8.

KEGG pathway analysis of differentially expressed proteins

Term Total
KEGG Candidat Candidat Term Total
Pathway KEGG Pathway Term KEGG Pathway e Gene e Gene Gene Gene Rich
Term ID KEGG Pathway Term Desc Level1 Term Level2 Num Num Num Num Ratio P value Q value
5012 Parkinson’s disease Human Diseases Neurodegenerative diseases 20 187 209 15870 0.09569 5.64E-13 1.60E-10
1100 Metabolic pathways Metabolism Global and overview rn r* k—\ r» 58 187 1923 15870 0.03016 4.81E-12 6.81E-10
5016 Huntington’s disease Human Diseases maps Neurodegenerative diseases 19 187 283 15870 0.06714 1.03E-09 9.72E-08
190 Oxidative phosphorylation Metabolism Energy metabolism 15 187 195 15870 0.07692 1.04E-08 7.33E-07
4714 Thermogenesis Organismal Systems Environmental adaptation 17 187 318 15870 0.05346 2.27E-07 1.28E-05
5010 Alzheimer’s disease Human Diseases Neurodegenerative diseases 15 187 256 15870 0.05859 3.76E-07 1.77E-05
1110 Biosynthesis of secondary metabolites Metabolism Global and overview 21 187 558 15870 0.03763 2.73E-06 1.10E-04
4020 Calcium signaling pathway Environmental Information Processing maps Signal transduction 12 187 256 15870 0.04688 5.27E-05 0.00186
4932 Non-alcoholic fatty liver disease (NAFLD) Human Diseases Endocrine and metabolic diseases 11 187 250 15870 0.044 1.89E-04 0.00594
350 Tyrosine metabolism Metabolism Amino acid metabolism 5 187 48 15870 0.10417 2.44E-04 0.00629
4922 Glucagon signaling pathway Organismal Systems Endocrine system 8 187 138 15870 0.05797 2.30E-04 0.00629
4723 Retrograde endocannabinoid signaling Organismal Systems Nervous system 9 187 180 15870 0.05 2.86E-04 0.00675
1200 Carbon metabolism Metabolism Global and overview 9 187 189 15870 0.04762 4.10E-04 0.00892
950 Isoquinoline alkaloid biosynthesis Metabolism maps Biosynthesis of other secondary metabolites 3 187 14 15870 0.21429 5.33E-04 0.01005
4217 Necroptosis Cellular Processes Cell growth and /-J /~\ r* -I- L-\ death 10 187 236 15870 0.04237 4.97E-04 0.01005
4979 Cholesterol metabolism Organismal Systems Digestive system 5 187 60 15870 0.08333 6.96E-04 0.01231
1120 Microbial metabolism in diverse environments Metabolism Global and overview maps 10 187 250 15870 0.04 7.77E-04 0.01267
4971 Gastric acid secretion Organismal Systems Digestive system 6 187 93 15870 0.06452 8.06E-04 0.01267
4260 Cardiac muscle contraction Organismal Systems Circulatory system 6 187 97 15870 0.06186 0.001 0.01497
4978 Mineral absorption Organismal Systems Digestive system 5 187 66 15870 0.07576 0.00108 0.01522
4728 Dopaminergic synapse Organismal Systems Nervous system 8 187 177 15870 0.0452 0.0012 0.01616
4725 Cholinergic synapse Organismal Systems Nervous system 7 187 145 15870 0.04828 0.00166 0.02136
1130 Biosynthesis of antibiotics Metabolism Global and overview rn r* k—\ r» 11 187 327 15870 0.03364 0.00175 0.02154
4730 Long-term depression Organismal Systems maps Nervous system 5 187 75 15870 0.06667 0.00191 0.0225
360 Phenylalanine metabolism Metabolism Amino acid metabolism 3 187 22 15870 0.13636 0.0021 0.02284
4218 Cellular senescence Cellular Processes Cell growth and 10 187 287 15870 0.03484 0.00218 0.02284
4921 Oxytocin signaling pathway Organismal Systems death Endocrine system 8 187 194 15870 0.04124 0.00214 0.02284
5031 Amphetamine addiction Human Diseases Substance dependence 5 187 86 15870 0.05814 0.00347 0.03401
5216 Thyroid cancer Human Diseases Cancers: Specific types 4 187 53 15870 0.07547 0.00348 0.03401
4720 Long-term potentiation Organismal Systems Nervous system 5 187 88 15870 0.05682 0.00383 0.03593
4916 Melanogenesis Organismal Systems Endocrine system 6 187 127 15870 0.04724 0.00394 0.03593
4022 cGMP-PKG signaling pathway Environmental Information Processing Signal transduction 8 187 228 15870 0.03509 0.00569 0.05033
4514 Cell adhesion molecules (CAMs) Environmental Information Processing Signaling molecules and interaction 9 187 279 15870 0.03226 0.00591 0.05068
790 Folate biosynthesis Metabolism Metabolism of cofactors and vitamins 3 187 33 15870 0.09091 0.00677 0.05544
3320 PPAR signaling pathway Organismal Systems Endocrine system 5 187 101 15870 0.0495 0.00686 0.05544
4216 Ferroptosis Cellular Processes Cell growth and /-J /~\ r* -I- L-\ death 4 187 65 15870 0.06154 0.00723 0.0568
4911 Insulin secretion Organismal Systems Endocrine system 5 187 104 15870 0.04808 0.00774 0.0592
4621 NOD-like receptor signaling pathway Organismal Systems Immune system 8 187 247 15870 0.03239 0.00904 0.06734
4972 Pancreatic secretion Organismal Systems Digestive system 5 187 111 15870 0.04505 0.0101 0.07331
4745 Phototransduction - fly Organismal Systems Sensory system 3 187 39 15870 0.07692 0.01078 0.07625
30 Pentose phosphate pathway Metabolism Carbohydrate metabolism 3 187 41 15870 0.07317 0.01236 0.08032
52 Galactose metabolism Metabolism Carbohydrate metabolism 3 187 41 15870 0.07317 0.01236 0.08032
4212 Longevity regulating pathway - worm Organismal Systems Aging 5 187 117 15870 0.04274 0.01249 0.08032
5034 Alcoholism Human Diseases Substance dependence 7 187 208 15870 0.03365 0.01174 0.08032
4912 GnRH signaling pathway Organismal Systems Endocrine system 5 187 118 15870 0.04237 0.01292 0.08125
4713 Circadian entrainment Organismal Systems Environmental adaptation 5 187 120 15870 0.04167 0.01381 0.08497
480 Glutathione metabolism Metabolism Metabolism of other amino acids 4 187 79 15870 0.05063 0.01413 0.08507
5230 Central carbon metabolism in cancer Human Diseases Cancers: Overview 4 187 81 15870 0.04938 0.01536 0.09059
4360 Axon guidance Organismal Systems Development 7 187 223 15870 0.03139 0.01665 0.09474
4925 Aldosterone synthesis and secretion Organismal Systems Endocrine system 5 187 126 15870 0.03968 0.01674 0.09474
51 Fructose and mannose metabolism Metabolism Carbohydrate metabolism 3 187 47 15870 0.06383 0.01786 0.09536
4371 Apelin signaling pathway Environmental Information Processing Signal transduction 6 187 175 15870 0.03429 0.0176 0.09536
4721 Synaptic vesicle cycle Organismal Systems Nervous system 4 187 84 15870 0.04762 0.01734 0.09536
4261 Adrenergic signaling in cardiomyocytes Organismal Systems Circulatory system 6 187 185 15870 0.03243 0.02245 0.11763
250 Alanine, aspartate and glutamate metabolism Metabolism Amino acid metabolism 3 187 52 15870 0.05769 0.02333 0.12003
10 Glycolysis / Gluconeogenesis Metabolism Carbohydrate metabolism 4 187 94 15870 0.04255 0.02506 0.12664
4640 Hematopoietic cell lineage Organismal Systems Immune system 6 187 194 15870 0.03093 0.02751 0.1366
20 Citrate cycle (TCA cycle) Metabolism Carbohydrate metabolism 3 187 58 15870 0.05172 0.03095 0.14129
71 Fatty acid degradation Metabolism Lipid metabolism 3 187 57 15870 0.05263 0.0296 0.14129
4066 HIF-1 signaling pathway Environmental Information Processing Signal transduction 5 187 148 15870 0.03378 0.03089 0.14129
4726 Serotonergic synapse Organismal Systems Nervous system 5 187 147 15870 0.03401 0.03012 0.14129
5214 Glioma Human Diseases Cancers: Specific types 4 187 100 15870 0.04 0.03054 0.14129
1230 Biosynthesis of amino acids Metabolism Global and overview rn r* k—\ r» 4 187 104 15870 0.03846 0.03455 0.15501
4974 Protein digestion and absorption Organismal Systems maps Digestive system 4 187 105 15870 0.0381 0.0356 0.15501
5030 Cocaine addiction Human Diseases Substance dependence 3 187 61 15870 0.04918 0.0352 0.15501
330 Arginine and proline metabolism Metabolism Amino acid metabolism 3 187 63 15870 0.04762 0.03819 0.15716
340 Histidine metabolism Metabolism Amino acid metabolism 2 187 27 15870 0.07407 0.03997 0.15716
520 Amino sugar and nucleotide sugar metabolism Metabolism Carbohydrate metabolism 3 187 64 15870 0.04688 0.03973 0.15716
4012 ErbB signaling pathway Environmental Information Processing Signal transduction 4 187 109 15870 0.0367 0.03999 0.15716
4727 GABAergic synapse Organismal Systems Nervous system 4 187 108 15870 0.03704 0.03886 0.15716
5110 Vibrio cholerae infection Human Diseases Infectious diseases: Bacterial 3 187 62 15870 0.04839 0.03668 0.15716
5166 HTLV-I infection Human Diseases Infectious diseases: Viral 10 187 447 15870 0.02237 0.03928 0.15716
4722 Neurotrophin signaling pathway Organismal Systems Nervous system 5 187 160 15870 0.03125 0.04105 0.15728
4970 Salivary secretion Organismal Systems Digestive system 4 187 110 15870 0.03636 0.04113 0.15728
4015 Rap1 signaling pathway Environmental Information Processing Signal transduction 7 187 273 15870 0.02564 0.04316 0.16287
1212 Fatty acid metabolism Metabolism Global and overview rn r* \ r. 3 187 69 15870 0.04348 0.0479 0.17797
4614 Renin-angiotensin system Organismal Systems maps Endocrine system 2 187 30 15870 0.06667 0.04842 0.17797

KEGG: Kyoto Encyclopedia of Genes and Genomes.

Myelin is composed of SCs, which are indispensable for the physiological functions of peripheral nerves (Salzer, 2015). Previously, impaired SC migration was reported to contribute to the abnormal myelination and demyelination of peripheral nerves (Anliker et al., 2013; Yi et al., 2019). Thus, we compared the function of SCs from nerves in the DPN and control groups. The primary SCs isolated from the peripheral nerves exhibited a long spindle shape under an optical microscope (Additional Figure 2A (1.1MB, tif) ). These were confirmed via positive immunofluorescence staining of S100 calcium binding protein B and glial fibrillary acidic protein (Additional Figure 2B (1.1MB, tif) ). Cell migration assays showed significantly impaired migration of SCs derived from patients with DPN (Figure 2G and H).

Characterization of circ_0002538 and its function in SCs

We performed circRNA sequencing for the three pairs of peripheral nerves to uncover their characteristics in the development of DPN. In diabetic peripheral nerves, we identified a total of 15637 circRNAs. A total of 169 circRNAs showed significantly (P < 0.01, q < 0.05, readings ≥ 50, FC ≥ 2) dysregulated expression in the DPN group: 116 circRNAs had significantly downregulated expression and 53 circRNAs had significantly upregulated expression (Additional Table 9). The differentially expressed circRNAs (DEcircRNAs) were directly displayed by hierarchical cluster analysis (Figure 3A). The DEcircRNAs were verified using RT-PCR, and the results showed that six circRNAs with downregulated expression and five with upregulated expression were confirmed in the DPN group (Figure 3B and C). These DEcircRNAs may play an important role in the pathogenesis of DPN.

Additional Table 9.

The DEcircRNAs analyzed in this study were selected from the results of circRNA sequencing analysis

circName gene symbol CZL-FC-B FFL-FQ-B YYC-FC-B CCK-FC WCF-FC-BX CZG-FC-BS log2(Fold_change) p-value q-value circBase Web
hsa_circ:chr11:120276827-120278532 ARHGEF12 319 435 636 9234 2564 4666 2.710491179 1.26E-10 2.22E-08 hsa_circ_0024604 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0024604
hsa_circ:chr9:134381501-134381840 POMT1 330 683 739 8179 4331 6055 2.598539216 2.77E-20 6.19E-17 hsa_circ_0001897 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001897
hsa_circ:chr10:128806996-128810638 DOCK1 80 136 217 1933 1163 1073 2.468022558 9.41E-15 6.13E-12 hsa_circ_0020433 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0020433
hsa_circ:chr13:24823615-24826000 SPATA13 63 90 66 1552 398 310 2.347737447 2.78E-06 0.000109 hsa_circ_0003040 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003040
hsa_circ:chr16:68155890-68160513 ENSG00000261864.1,NFATC3 140 127 170 1522 1492 944 2.331800087 3.09E-14 1.79E-11 hsa_circ_0000711 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000711
hsa_circ:chr15:101775287-101775782 CHSY1 113 161 107 2302 673 706 2.278883636 1.92E-05 0.000503 hsa_circ_0005019 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0005019
hsa_circ:chr19:1271328-1272050 CIRBP 115 273 289 2890 1394 1281 2.184967412 8.65E-11 1.73E-08 hsa_circ_0007715 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0007715
hsa_circ:chr3:171965323-171969331 FNDC3B 358 1139 926 8645 4811 4483 2.039068321 3.77E-06 0.000138 hsa_circ_0006156 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0006156
hsa_circ:chr5:171482592-171484477 STK10 86 172 117 1260 705 793 2.001937464 8.13E-08 5.36E-06 hsa_circ_0001555 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001555
hsa_circ:chr1:14042036-14075982 PRDM2 82 83 105 809 562 480 1.919088074 9.56E-08 6.13E-06 NA NA
hsa_circ:chr16:88061089-88071617 BANP 169 147 192 1461 1166 846 1.906629396 4.70E-10 6.56E-08 hsa_circ_0040823 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0040823
hsa_circ:chr10:99196948-99197507 EXOSC1 172 254 482 2531 1820 1364 1.872337049 2.45E-10 3.76E-08 hsa_circ_0004896 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0004896
hsa_circ:chr15:41036245-41037457 RMDN3 70 133 158 1171 517 624 1.838657173 1.16E-06 5.33E-05 hsa_circ_0004942 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0004942
hsa_circ:chr15:93540187-93541851 CHD2 60 55 125 426 490 464 1.794259793 2.85E-05 0.000704 hsa_circ_0000655 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000655
hsa_circ:chr16:68155890-68157024 ENSG00000261864.1,NFATC3 133 99 174 1039 779 652 1.764900392 1.28E-07 7.93E-06 hsa_circ_0005615 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0005615
hsa_circ:chr19:41754419-41754725 AXL 211 297 597 3127 1340 1883 1.741241582 6.40E-08 4.27E-06 hsa_circ_0002882 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002882
hsa_circ:chr8:131164982-131181313 ASAP1 542 363 544 4679 1996 2298 1.71720344 2.15E-08 1.69E-06 hsa_circ_0001824 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001824
hsa_circ:chr16:11114050-11154879 CLEC16A 57 63 55 435 309 308 1.712257159 0.000168 0.002957 hsa_circ_0000672 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000672
hsa_circ:chr21:48063447-48064400 PRMT2 143 220 351 1972 1321 843 1.711577476 5.98E-08 4.07E-06 hsa_circ_0003781 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003781
hsa_circ:chr22:34157358-34252790 LARGE1 110 143 250 1555 527 832 1.708406728 5.51E-06 0.000187 hsa_circ_0063019 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0063019
hsa_circ:chr9:131271155-131277918 GLE1 75 101 141 1006 413 462 1.706348705 1.24E-05 0.000357 hsa_circ_0002675 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002675
hsa_circ:chr12:57059988-57064148 PTGES3 69 86 84 589 276 526 1.702531372 0.00013 0.00244 hsa_circ_0027089 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0027089
hsa_circ:chr21:46275125-46281186 PTTG1IP 357 285 333 2777 1239 1859 1.698755826 1.32E-07 8.12E-06 hsa_circ_0001200 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001200
hsa_circ:chr6:43023283-43024183 MRPL2 57 66 131 629 367 418 1.69182392 3.44E-05 0.000814 hsa_circ_0001608 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001608
hsa_circ:chr12:123983091-123984083 RILPL1 236 520 520 3230 1977 1984 1.666769005 1.52E-08 1.25E-06 hsa_circ_0007552 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0007552
hsa_circ:chr1:154207067-154207767 UBAP2L 104 216 266 1431 644 1087 1.640288416 8.60E-06 0.00027 NA NA
hsa_circ:chr14:103918255-103923549 MARK3 157 139 150 1321 530 727 1.617693132 1.54E-05 0.000426 hsa_circ_0033475 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0033475
hsa_circ:chr1:27269151-27269556 NUDC 256 302 550 2609 1519 1684 1.595422136 6.40E-09 5.99E-07 hsa_circ_0005087 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0005087
hsa_circ:chr3:153912433-153935747 ARHGEF26 73 92 85 526 246 556 1.584230606 0.000715 0.008975 NA NA
hsa_circ:chr12:124904503-124915333 NCOR2 88 118 162 1099 509 376 1.544679115 7.38E-05 0.001525 hsa_circ_0029308 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0029308
hsa_circ:chr1:215759838-215768813 KCTD3 146 310 261 1709 765 1238 1.531205242 2.13E-05 0.000548 hsa_circ_0005521 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0005521
hsa_circ:chr15:41361768-41362745 INO80 87 91 116 621 421 468 1.527105285 5.26E-05 0.00115 hsa_circ_0007489 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0007489
hsa_circ:chr3:119222379-119222868 TIMMDC1 628 987 1512 7770 4093 3672 1.486728502 8.43E-09 7.53E-07 hsa_circ_0008394 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0008394
hsa_circ:chr11:124517261-124518071 SIAE 145 58 148 631 502 583 1.46585348 0.000785 0.009691 hsa_circ_0000367 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000367
hsa_circ:chr8:103372299-103373854 UBR5 700 859 1621 6211 4483 4183 1.449358147 7.72E-10 1.01E-07 hsa_circ_0001819 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001819
hsa_circ:chr19:47767860-47768203 CCDC9 671 1253 1708 7592 4454 4462 1.379543586 7.66E-08 5.07E-06 hsa_circ_0000944 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000944
hsa_circ:chr12:120592774-120593523 GCN1 254 214 353 1843 877 1084 1.356950971 1.22E-05 0.000355 hsa_circ_0000448 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000448
hsa_circ:chr3:47139445-47147610 SETD2 355 449 487 2582 2034 1387 1.354151656 2.39E-07 1.36E-05 hsa_circ_0001290 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001290
hsa_circ:chr14:23378692-23380612 RBM23 667 977 1913 7053 3121 5100 1.342548268 7.29E-06 0.000234 hsa_circ_0000524 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000524
hsa_circ:chr8:131164982-131193126 ASAP1 416 319 408 2441 1681 1141 1.297037309 1.40E-05 0.000395 hsa_circ_0008934 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0008934
hsa_circ:chr20:47570093-47580435 ARFGEF2 154 158 286 1158 673 740 1.293570365 5.27E-05 0.001151 hsa_circ_0003998 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003998
hsa_circ:chr15:80412670-80415142 ZFAND6 527 568 743 3469 1985 2536 1.284851683 4.57E-07 2.43E-05 hsa_circ_0000643 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000643
hsa_circ:chr2:160025761-160027316 TANC1 180 223 267 1150 1009 737 1.277151485 1.78E-05 0.000475 hsa_circ_0056810 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0056810
hsa_circ:chr3:196118684-196120490 UBXN7 142 174 237 1046 654 651 1.255873553 6.77E-05 0.001419 hsa_circ_0005051 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0005051
hsa_circ:chr18:9524592-9525849 RALBP1 1003 1152 2868 10330 4744 5270 1.235638445 1.91E-05 0.000502 hsa_circ_0005158 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0005158
hsa_circ:chr11:108137898-108138069 ATM 179 204 289 1390 602 838 1.228247142 0.000216 0.003586 hsa_circ_0007694 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0007694
hsa_circ:chr9:33971649-33973235 UBAP2 657 1419 1442 5858 4652 3689 1.195953494 6.18E-06 0.000205 hsa_circ_0001851 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001851
hsa_circ:chr2:72958136-72960247 EXOC6B 287 311 549 2065 941 1492 1.170419692 0.000174 0.003028 hsa_circ_0001030 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001030
hsa_circ:chr3:56600622-56601081 CCDC66 322 286 510 1987 1398 1019 1.138112107 4.21E-05 0.000963 hsa_circ_0001312 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001312
hsa_circ:chr3:197592294-197593090 LRCH3 194 209 359 1218 729 916 1.113625109 0.000336 0.005019 hsa_circ_0008439 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0008439
hsa_circ:chr2:168920010-168986268 STK39 275 623 721 3239 1381 1516 1.077885846 0.000968 0.011373 hsa_circ_0005882 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0005882
hsa_circ:chr2:209209835-209212747 PIKFYVE 221 327 371 1433 1151 829 1.054921911 0.000252 0.004053 hsa_circ_0001097 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001097
hsa_circ:chr2:153431650-153437563 FMNL2 556 825 1057 3816 2604 2419 1.038670032 1.03E-05 0.000312 NA NA
hsa_circ:chr5:142434004-142437312 ARHGAP26 527 543 586 456 476 468 -1.063382894 0.000916 0.010935 hsa_circ_0074371 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0074371
hsa_circ:chr11:46098305-46113774 PHF21A 928 1052 1333 995 1093 678 -1.084886764 4.59E-05 0.001024 hsa_circ_0000296 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000296
hsa_circ:chr5:65284463-65290692 ERBIN 794 640 1888 996 1003 629 -1.087183343 0.000669 0.00854 hsa_circ_0001492 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001492
hsa_circ:chr8:62593527-62596747 ASPH 1413 1936 2315 2148 1127 1320 -1.146691876 3.42E-06 0.000127 hsa_circ_0084615 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0084615
hsa_circ:chr3:157839892-157841780 RSRC1 333 362 550 331 321 292 -1.186546656 0.000256 0.004091 hsa_circ_0001355 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001355
hsa_circ:chr4:128995615-128999117 LARP1B 288 242 369 301 240 148 -1.247937024 0.000787 0.009699 hsa_circ_0001438 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001438
hsa_circ:chr11:77394755-77404656 RSF1 541 609 1027 614 535 430 -1.254991191 5.89E-06 0.000197 hsa_circ_0000344 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000344
hsa_circ:chr10:32197100-32199491 ARHGAP12 850 564 874 589 560 521 -1.289193851 3.98E-05 0.000919 hsa_circ_0000231 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000231
hsa_circ:chr8:48308936-48320523 SPIDR 236 385 371 384 177 187 -1.289993629 0.000696 0.008758 hsa_circ_0001798 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001798
hsa_circ:chr9:16727795-16738483 BNC2 502 322 648 342 400 297 -1.303581784 0.000208 0.003485 hsa_circ_0008732 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0008732
hsa_circ:chr2:9083316-9098771 MBOAT2 783 991 1306 839 729 587 -1.329282379 1.20E-07 7.47E-06 hsa_circ_0007334 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0007334
hsa_circ:chr12:120995085-120995485 RNF10 402 505 580 284 487 231 -1.373430304 0.000227 0.003722 hsa_circ_0028899 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0028899
hsa_circ:chr10:71243447-71244971 TSPAN15 201 543 588 248 341 258 -1.395283832 0.000598 0.007849 hsa_circ_0002758 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002758
hsa_circ:chr12:70193989-70195501 RAB3IP 633 939 1455 742 555 598 -1.445561613 1.99E-07 1.16E-05 hsa_circ_0000419 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000419
hsa_circ:chr2:24357989-24369956 FAM228B 389 521 717 494 268 297 -1.44910951 3.08E-06 0.000118 hsa_circ_0000982 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000982
hsa_circ:chr17:57430576-57430887 YPEL2 415 523 518 393 331 243 -1.45137057 4.95E-06 0.000171 hsa_circ_0005600 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0005600
hsa_circ:chr17:30310018-30315516 SUZ12 246 265 363 238 191 140 -1.459103606 5.79E-05 0.00125 hsa_circ_0002629 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002629
hsa_circ:chr2:191523884-191537878 NAB1 218 174 400 157 215 115 -1.468917338 0.000695 0.008753 hsa_circ_0002024 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002024
hsa_circ:chr3:196118684-196129890 UBXN7 5879 6433 9687 4835 5200 3721 -1.473332214 1.01E-11 2.63E-09 hsa_circ_0001380 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001380
hsa_circ:chr6:82920531-82922510 IBTK 217 163 457 157 235 97 -1.528497514 0.000981 0.011495 hsa_circ_0002041 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002041
hsa_circ:chr15:62299507-62306191 VPS13C 557 1016 942 555 472 491 -1.536923666 4.72E-07 2.48E-05 hsa_circ_0000607 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000607
hsa_circ:chr2:240929491-240946787 NDUFA10 240 263 316 182 160 151 -1.556620967 3.99E-05 0.00092 hsa_circ_0001118 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001118
hsa_circ:chr17:63739186-63746842 CEP112 231 220 285 166 144 133 -1.563739774 7.63E-05 0.001566 hsa_circ_0002910 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002910
hsa_circ:chr4:87685746-87689129 PTPN13 448 382 838 275 361 301 -1.569552881 8.09E-06 0.000257 hsa_circ_0007948 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0007948
hsa_circ:chr15:76152219-76165909 UBE2Q2 235 303 372 306 132 126 -1.578701729 6.23E-05 0.001327 NA NA
hsa_circ:chr1:107866904-107867544 NTNG1 135 227 433 108 134 177 -1.586753878 0.000925 0.011016 hsa_circ_0002286 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002286
hsa_circ:chr8:25265499-25266456 DOCK5 197 155 386 178 114 128 -1.591595366 0.000197 0.003357 hsa_circ_0007618 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0007618
hsa_circ:chr8:42812237-42819617 HOOK3 504 280 548 203 331 231 -1.595558057 8.55E-05 0.00172 hsa_circ_0006376 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0006376
hsa_circ:chr5:145634506-145638156 RBM27 142 174 323 118 147 90 -1.603683599 0.000366 0.005392 hsa_circ_0006087 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0006087
hsa_circ:chr20:35532560-35533906 SAMHD1 147 285 320 138 151 131 -1.611456748 0.000156 0.002811 hsa_circ_0060221 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0060221
hsa_circ:chr14:80163973-80271533 NRXN3 466 706 1022 368 437 392 -1.61911495 3.73E-07 2.03E-05 hsa_circ_0032812 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0032812
hsa_circ:chr1:9991949-9994918 LZIC 929 1146 1706 803 821 508 -1.629900769 5.59E-10 7.54E-08 hsa_circ_0000014 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000014
hsa_circ:chr17:49340635-49346265 UTP18 546 322 588 343 252 248 -1.638251504 3.23E-06 0.000122 hsa_circ_0002789 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002789
hsa_circ:chr13:21305980-21306260 EEF1AKMT1 208 172 572 194 172 138 -1.642222482 0.000137 0.002537 hsa_circ_0003285 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003285
hsa_circ:chr12:109509417-109511337 USP30 207 316 495 265 189 114 -1.661513009 1.53E-05 0.000425 hsa_circ_0028094 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0028094
hsa_circ:chr21:34804484-34805178 IFNGR2 359 487 801 379 249 268 -1.663057865 1.47E-07 8.93E-06 hsa_circ_0001185 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001185
hsa_circ:chr18:51797730-51800460 POLI 333 147 305 141 138 156 -1.67484072 0.000324 0.004882 hsa_circ_0007180 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0007180
hsa_circ:chr18:39607407-39629569 PIK3C3 149 149 203 115 93 73 -1.675462109 0.000252 0.004052 hsa_circ_0007765 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0007765
hsa_circ:chr1:155646339-155649303 YY1AP1 2356 3540 5429 1894 2148 1856 -1.685354126 3.27E-11 7.30E-09 hsa_circ_0014606 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0014606
hsa_circ:chr10:17746430-17747740 STAM 169 183 371 100 101 161 -1.691618912 0.000374 0.005482 hsa_circ_0008311 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0008311
hsa_circ:chr4:17963526-17974508 LCORL 167 212 161 137 123 55 -1.695139251 0.00062 0.008076 hsa_circ_0069285 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0069285
hsa_circ:chr7:156758964-156759786 NOM1 198 174 224 111 148 67 -1.71930518 0.000266 0.004207 hsa_circ_0004210 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0004210
hsa_circ:chr21:16386665-16415895 NRIP1 714 326 806 421 311 273 -1.725063678 2.17E-06 9.04E-05 hsa_circ_0004771 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0004771
hsa_circ:chr8:52773405-52773806 PCMTD1 208 300 498 198 84 223 -1.729606809 0.000145 0.002661 hsa_circ_0001801 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001801
hsa_circ:chr17:28011581-28030080 SSH2 323 364 556 123 269 224 -1.731580628 4.70E-05 0.001042 hsa_circ_0000754 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000754
hsa_circ:chr6:69943182-69949118 ADGRB3 323 457 1022 389 312 213 -1.734214663 8.51E-07 4.11E-05 hsa_circ_0076952 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0076952
hsa_circ:chr1:67356837-67371058 WDR78 1412 2109 2693 1131 1452 672 -1.736691757 1.60E-09 1.91E-07 hsa_circ_0006677 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0006677
hsa_circ:chr13:61013822-61041513 TDRD3 355 326 514 135 245 212 -1.758880801 1.71E-05 0.000465 hsa_circ_0003441 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003441
hsa_circ:chr15:59204762-59209198 SLTM 1416 1922 2225 1377 835 741 -1.771539504 1.54E-13 7.28E-11 hsa_circ_0000605 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000605
hsa_circ:chr16:69729039-69729282 NFAT5 143 149 213 146 66 60 -1.778319789 0.000239 0.00388 hsa_circ_0006845 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0006845
hsa_circ:chr9:123593609-123595734 PSMD5 174 282 304 227 84 98 -1.780625243 5.56E-05 0.001203 hsa_circ_0088300 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0088300
hsa_circ:chr12:50488220-50490755 SMARCD1 115 118 198 105 58 60 -1.781723407 0.00039 0.005678 hsa_circ_0006535 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0006535
hsa_circ:chr11:61133517-61135470 TMEM138 189 146 182 135 81 64 -1.7955221 0.000178 0.003096 hsa_circ_0002058 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002058
hsa_circ:chr11:74500671-74528759 RNF169 110 121 172 64 54 78 -1.808809005 0.000729 0.0091 hsa_circ_0006705 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0006705
hsa_circ:chr18:12999420-13019205 CEP192 221 102 184 70 115 72 -1.815986154 0.000885 0.010634 hsa_circ_0000831 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000831
hsa_circ:chr1:65830318-65831879 DNAJC6 295 481 347 160 205 189 -1.834491757 6.26E-06 0.000207 hsa_circ_0002454 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002454
hsa_circ:chr6:42571326-42574389 UBR2 112 163 185 66 99 58 -1.836536466 0.00037 0.005439 hsa_circ_0003177 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003177
hsa_circ:chr6:163876311-163899928 QKI 1657 1249 1307 782 652 692 -1.859275235 1.03E-09 1.30E-07 hsa_circ_0005328 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0005328
hsa_circ:chr1:46105882-46108171 GPBP1L1 328 293 612 254 169 167 -1.860555838 1.06E-07 6.68E-06 hsa_circ_0008774 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0008774
hsa_circ:chr13:41400642-41411021 TPTE2P5 245 394 782 293 190 169 -1.887843272 3.14E-07 1.74E-05 hsa_circ_0030049 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0030049
hsa_circ:chr14:73614503-73614814 PSEN1 320 237 641 234 190 134 -1.887868333 7.37E-07 3.65E-05 hsa_circ_0003848 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003848
hsa_circ:chr7:77214860-77230123 PTPN12 495 455 833 414 225 217 -1.897059838 1.89E-09 2.20E-07 hsa_circ_0003764 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003764
hsa_circ:chr1:155408118-155429689 ASH1L 328 269 304 285 97 92 -1.897198961 2.31E-05 0.000588 hsa_circ_0003247 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003247
hsa_circ:chr11:130130751-130131824 ZBTB44 608 571 848 383 334 251 -1.89787129 5.36E-11 1.13E-08 hsa_circ_0002484 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002484
hsa_circ:chr1:8601273-8617582 RERE 290 681 464 171 272 208 -1.931936853 3.90E-06 0.000142 hsa_circ_0002158 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002158
hsa_circ:chr4:3088666-3109150 HTT 404 453 842 234 347 162 -1.957630898 8.89E-08 5.81E-06 hsa_circ_0001392 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001392
hsa_circ:chr4:88116476-88116842 KLHL8 1033 1215 1827 722 706 411 -1.963351471 9.68E-14 5.22E-11 hsa_circ_0002538 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0002538
hsa_circ:chr2:61749746-61761038 XPO1 959 665 1209 544 502 253 -1.984531006 4.67E-10 6.56E-08 hsa_circ_0001017 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001017
hsa_circ:chr17:57808782-57816308 VMP1 361 318 726 154 211 214 -1.988030719 4.03E-07 2.19E-05 hsa_circ_0006508 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0006508
hsa_circ:chr7:35707044-35712888 HERPUD2 340 387 699 234 218 163 -1.993507775 1.99E-09 2.28E-07 hsa_circ_0001696 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001696
hsa_circ:chr2:72945232-72960247 EXOC6B 1431 2095 3069 1431 1054 480 -2.001467344 1.03E-11 2.63E-09 hsa_circ_0009043 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0009043
hsa_circ:chr6:13579683-13584457 SIRT5 146 288 318 129 100 97 -2.004710089 2.56E-06 0.000103 hsa_circ_0007218 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0007218
hsa_circ:chr4:25334805-25335610 ZCCHC4 156 207 280 133 77 73 -2.022388568 2.96E-06 0.000115 hsa_circ_0001398 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001398
hsa_circ:chr5:176370336-176385155 UIMC1 461 772 1120 353 216 351 -2.106445561 5.79E-10 7.74E-08 hsa_circ_0001558 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001558
hsa_circ:chrX:84322133-84329397 APOOL 145 198 269 118 83 53 -2.112907281 2.78E-06 0.000109 NA NA
hsa_circ:chr17:40652725-40653322 ATP6V0A1 254 223 372 146 113 90 -2.113586009 5.38E-08 3.71E-06 hsa_circ_0008179 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0008179
hsa_circ:chr9:86293356-86301070 UBQLN1 189 163 310 107 79 80 -2.115649688 1.13E-06 5.25E-05 hsa_circ_0087357 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0087357
hsa_circ:chr1:24840804-24841057 RCAN3 206 210 329 183 56 77 -2.123426738 4.46E-06 0.000158 hsa_circ_0003553 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003553
hsa_circ:chr2:203329532-203332412 BMPR2 484 444 797 269 218 201 -2.125658637 6.93E-12 1.84E-09 hsa_circ_0003218 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003218
hsa_circ:chr19:5604594-5604947 SAFB2 442 373 995 333 227 158 -2.128204396 1.52E-09 1.83E-07 hsa_circ_0000880 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000880
hsa_circ:chr1:231672959-231678357 TSNAX,TSNAX-DISC1 201 158 286 100 97 62 -2.140515735 1.59E-06 6.94E-05 hsa_circ_0004834 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0004834
hsa_circ:chr15:65471272-65472542 CLPX 299 355 497 176 139 139 -2.146513558 5.34E-10 7.32E-08 hsa_circ_0004374 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0004374
hsa_circ:chr9:96233423-96261168 FAM120A 197 224 255 107 106 60 -2.162766439 6.63E-07 3.31E-05 hsa_circ_0001875 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001875
hsa_circ:chr1:155408118-155408859 ASH1L 364 271 580 97 204 141 -2.190087424 4.80E-07 2.52E-05 hsa_circ_0000137 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000137
hsa_circ:chr15:52073241-52075025 TMOD2 437 1044 1579 504 311 321 -2.194525839 1.25E-10 2.21E-08 hsa_circ_0005566 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0005566
hsa_circ:chr9:86294690-86301070 UBQLN1 151 147 200 56 78 50 -2.242152547 8.23E-06 0.00026 hsa_circ_0008207 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0008207
hsa_circ:chr2:148730308-148733544 ORC4 365 388 689 135 252 126 -2.242823654 1.62E-08 1.33E-06 hsa_circ_0001074 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001074
hsa_circ:chr10:112356156-112358048 SMC3 491 172 529 212 188 62 -2.264025134 3.61E-06 0.000134 hsa_circ_0000260 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000260
hsa_circ:chr13:28748409-28752072 PAN3 183 153 260 88 65 62 -2.294869535 4.05E-07 2.19E-05 hsa_circ_0004372 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0004372
hsa_circ:chr4:170523159-170523829 NEK1 176 347 97 96 63 79 -2.306289829 5.38E-05 0.001169 NA NA
hsa_circ:chr18:19345733-19359646 MIB1 323 351 426 217 120 77 -2.315777256 1.85E-09 2.18E-07 hsa_circ_0000835 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000835
hsa_circ:chr17:1264386-1265302 YWHAE 262 157 384 85 136 57 -2.321810669 1.49E-06 6.58E-05 hsa_circ_0007643 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0007643
hsa_circ:chr3:119222379-119236162 TIMMDC1 210 263 481 60 167 80 -2.342166994 1.90E-06 8.04E-05 hsa_circ_0001330 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001330
hsa_circ:chr9:113734353-113735838 LPAR1 2936 4423 8134 1906 1654 1478 -2.365204654 2.86E-21 1.12E-17 hsa_circ_0087960 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0087960
hsa_circ:chr13:33091994-33101669 N4BP2L2 2837 2329 4577 940 1585 707 -2.369990899 7.91E-09 7.15E-07 hsa_circ_0000471 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000471
hsa_circ:chr16:69404386-69406258 TERF2 498 542 898 247 245 159 -2.374102438 1.49E-14 8.94E-12 NA NA
hsa_circ:chr18:76953183-76974038 ATP9B 252 454 450 113 102 158 -2.391382487 1.05E-08 9.19E-07 hsa_circ_0003275 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003275
hsa_circ:chr13:61013822-61034674 TDRD3 244 203 403 115 104 65 -2.395858265 5.94E-09 5.69E-07 hsa_circ_0004245 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0004245
hsa_circ:chr12:12397196-12397589 LRP6 188 294 547 165 98 62 -2.473349321 5.41E-09 5.28E-07 hsa_circ_0000378 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000378
hsa_circ:chr2:201721405-201721708 CLK1 309 194 574 194 85 64 -2.506600637 2.21E-08 1.72E-06 hsa_circ_0004001 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0004001
hsa_circ:chr6:144858718-144860579 UTRN 582 657 729 197 171 234 -2.508556777 1.32E-13 6.45E-11 hsa_circ_0001647 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001647
hsa_circ:chr9:33953283-33963789 UBAP2 347 516 608 128 222 97 -2.509558617 2.45E-10 3.76E-08 hsa_circ_0001847 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001847
hsa_circ:chr2:9083316-9114564 MBOAT2 372 604 682 185 198 106 -2.583299781 1.02E-13 5.31E-11 NA NA
hsa_circ:chr3:119222379-119232566 TIMMDC1 424 751 949 204 277 109 -2.644168253 9.51E-13 3.54E-10 hsa_circ_0066875 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0066875
hsa_circ:chr6:79770195-79770535 PHIP 194 377 456 69 136 68 -2.660814144 6.00E-09 5.69E-07 hsa_circ_0003810 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003810
hsa_circ:chr7:158552177-158557544 ESYT2 666 659 1374 205 250 196 -2.794191361 1.93E-18 2.51E-15 hsa_circ_0001776 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001776
hsa_circ:chr2:167304122-167328955 SCN7A 456 1950 1151 123 303 386 -2.832543078 0.000396 0.005733 NA NA
hsa_circ:chr8:71071740-71075089 NCOA2 342 417 675 121 154 57 -2.914152365 1.76E-13 8.09E-11 hsa_circ_0001810 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001810
hsa_circ:chr4:144464662-144465125 SMARCA5 5007 5266 8372 1224 1054 1807 -2.924894033 1.23E-13 6.19E-11 hsa_circ_0001445 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0001445
hsa_circ:chr17:67151160-67152066 ABCA10 327 365 1210 184 153 73 -2.95426875 2.63E-12 7.90E-10 NA NA
hsa_circ:chr8:71126138-71128999 NCOA2 243 465 708 116 107 69 -3.050636317 1.82E-15 1.43E-12 NA NA
hsa_circ:chr1:48821342-48825442 SPATA6 1753 2831 3554 736 508 480 -3.050955648 2.72E-37 4.25E-33 hsa_circ_0008202 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0008202
hsa_circ:chr10:61844360-61845011 ANK3 397 537 1227 154 115 95 -3.31743446 4.15E-21 1.30E-17 NA NA
hsa_circ:chr6:139264650-139265759 REPS1 420 387 825 82 91 98 -3.322250921 4.80E-19 9.39E-16 hsa_circ_0004368 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0004368
hsa_circ:chr11:18312989-18314523 HPS5 462 281 521 56 61 87 -3.405443326 5.65E-15 3.84E-12 hsa_circ_0000280 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0000280
hsa_circ:chr12:121220458-121222396 SPPL3 427 685 958 59 80 87 -3.918139861 1.22E-25 9.58E-22 hsa_circ_0003472 http://www.circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0003472

Figure 3.

Figure 3

Characterization of circ_0002538 and its function in SCs.

(A) Hierarchical clustering analyses of DEcircRNAs (n = 3). (B, C) RT-PCR verified five circRNAs with upregulated expression and six circRNAs with downregulated expression, and the results were consistent with the RNA-seq data (n = 12). The red dotted box highlights the circRNA of interest. Y-axis: Fold changes in circRNA expression compared with the non-diabetic group. *P < 0.05, **P < 0.01, vs. non-diabetic group (independent-sample t-test). (D) Schematic diagram showing that circ_0002538 was formed by the circularization of KLHL8 exon 2. The red arrow represents the “head-to-tail” splicing site of circ_0002538, confirmed by Sanger sequencing. (E) We used divergent primers and convergent primers to amplify circ_0002538 in cDNA and gDNA. We used β-actin as a negative control. (F) circ_0002538 and KLHL8 mRNA in SCs were detected via RT-PCR after incubation with or without RNase R. Y-axis: fold changes in RNA expression compared with the mock group. ***P < 0.001, vs. mock group (independent-sample t-test). (G) circ_0002538 and KLHL8 mRNA levels were evaluated in the sh-circ_0002538-transfected SCs via RT-PCR. Y-axis: fold changes in RNA expression compared with the sh-NC group. ***P < 0.001, vs. sh-NC group. (H, I) The migrating number of SCs in the sh-circ_0002538 group was lower than that in the sh-NC group in the Transwell assays. **P < 0.01, vs. sh-NC group (independent-sample t-test). Scale bars: 100 μm. All bar graphs represent the average of at least three independent replicates, and the error bars are the SD. cDNA: Complementary DNA; DPN: diabetic peripheral neuropathy; gDNA: genomic DNA; KLHL8: Kelch-like family member 8; sh-circ_0002538: short hairpin RNA for circ_0002538; sh-NC: normal control for short hairpin RNA.

Figure 5.

Figure 5

circ_0002538 regulates the expression of PLLP in vitro and in vivo.

(A) We examined the mRNA expression of the myelination-related genes SERINC5, PLLP, GJC3, PLP1, PRX, and MPZ in the circ_0002538-overexpressing SCs. Y-axis: fold changes in mRNA expression compared with the vector group. *P < 0.05, **P < 0.01, ***P < 0.001, vs. vector group (independent-sample t-test). (B) We used western blot analysis to evaluate the effect of circ_0002538 on PLLP in SCs. (C, D) We examined PLLP expression in the SCs cultured in ox-LDL via RT-PCR and western blotting. Y-axis: fold changes in PLLP mRNA expression compared with the 0 μg/mL group. *P < 0.05, ***P < 0.001, vs. 0 μg/mL group (one-way analysis of variance and Tukey’s post hoc test). (E, F) We evaluated the effect of circ_0002538 on PLLP in SCs cultured with ox-LDL via RT-PCR and western blotting. Y-axis: fold changes in PLLP mRNA expression compared with the control group. **P < 0.01, vs. control group; #P < 0.05, vs. SCs cultured in ox-LDL (one-way analysis of variance and Tukey’s post hoc test). (G, H) We tested PLLP protein expression in peripheral nerve tissues from patients with or without DPN via western blotting (n = 6). Y-axis: Fold changes in PLLP protein expression normalized to β-actin compared with the vector group. **P < 0.01 (independent-sample t-test). (I) The overexpression of circ_0002538 increased the protein expression level of PLLP in the sciatic nerve of mice with DPN (n = 3). (J) Quantification of PLLP by the densitometry of protein bands. *P < 0.05, vs. vector group (paired t-test). All bar graphs represent the average of three independent replicates, and the data are given as the mean ± SD. DPN: Diabetic peripheral neuropathy; GJC3: gap junction protein gamma 3; MPZ: myelin protein zero; ox-LDL-C: oxidized low-density lipoprotein cholesterol; PLLP: plasmolipin; PLP1: proteolipid protein 1; PRX: periaxin; SERINC5: serine incorporator 5; sh-circ_0002538: short hairpin RNA for circ_0002538; sh-NC: normal control for short hairpin RNA.fffc

To further investigate the function of DEcircRNAs in DPN, we focused on circRNA circ_0002538, which showed a 2.14-FC decrease in expression in the DPN group compared with the non-DPN group. circ_0002538 is formed by head-to-tail splicing of exon 2 of the KLHL8 gene, which is located on chromosome 4 (q22.1) (Figure 3D). Sanger sequencing verified the head-to-tail splicing, which was consistent with the data in circBase (Figure 3D). circ_0002538 could be amplified by RT-PCR using divergent primers in cDNA but not in genomic DNA (Figure 3E). circ_0002538 was barely altered after incubation with RNase R comparing to the mock group (Figure 3F), which further confirmed that circ_0002538 has a loop structure.

We confirmed that circ_0002538 expression was decreased in DPN tissues (Figure 3C). Then, we transfected LV-circ_0002538-shRNA into SCs to simulate the pathological process of SCs during DPN. shRNA significantly reduced circ_0002538 expression without affecting the KLHL8 mRNA expression (Figure 3G). We chose sh-circ_0002538 #2 in the following experiments because it had a high inhibitory efficiency compared with the other shRNAs. Migration assays revealed that the knockdown of circ_0002538 impeded the migration of SCs (Figure 3H and I). We further validated the effects of circ_0002538 in the circ_0002538-overexpressing SCs. The expression level of circ_0002538 in these stable overexpression cells was substantially increased, while there was no change in the KLHL8 mRNA level (Additional Figure 3A (777KB, tif) ). Migration assays revealed that the overexpression of circ_0002538 increased the number of SCs that migrated to the lower chamber (Additional Figure 3B (777KB, tif) and C). These findings indicate that circ_0002538 was involved in regulating SC migration in vitro.

Overexpression of circ_0002538 improves the neuropathic phenotype and symptoms of DPN

To further assess the role of circ_0002538 in DPN in vivo, we injected circ_0002538 LV into mice with DPN (Figure 4A). We used a fluorescence microscope to examine GFP-positive cells in the sciatic nerve at the 8th week after surgery, and found that injection of the LV-vector led to long-term transgene expression in the sciatic nerve (Figure 4B). RT-PCR revealed that circ_0002538 expression in the circ_0002538 group was higher than that in the vector group (Figure 4C). Immunofluorescence showed that GFP-positive cells also expressed MPZ protein in the circ_0002538 overexpression group, indicating that circ_0002538 was stably expressed in SCs (Figure 4D).

Figure 4.

Figure 4

Overexpression of circ_0002538 improves demyelination and symptoms of DPN.

(A) Intraoperative images showing the sciatic nerve after the injection of lentiviral solution. Scale bar: 1500 μm. (B) Eight weeks after the injection of lentiviral solution. We observed green fluorescence in the sciatic nerve under a fluorescence microscope. Scale bar: 200 μm. (C) Eight weeks after the injection of LV-circ_0002538, we examined the mRNA expression level of circ_0002538 in the sciatic nerve via RT-PCR (n = 4). Y-axis: fold changes in circ_0002538 expression compared with the vector side. (D) Immunofluorescence staining of MPZ showed that GFP+ cells also expressed MPZ. The arrows indicate the co-localized regions. (E, F) Eight weeks after the injection of lentiviral solution, the mechanical (E) and thermal (F) nociceptive thresholds were evaluated in the circ_0002538 group and the vector group (n = 20). (G, H) SNCV and MNCV were measured in the circ_0002538 group and the control group (n = 20). (I) The number of abnormal myelin sheaths in the circ_0002538 group, detected by transmission electron microscopy, was lower than that in the vector group (n = 4). Arrows indicate abnormal myelin sheaths. Scale bars: 5 μm. (J) Quantification of the ratio of myelin abnormalities in I. The data are given as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, vs. vector side (paired t-test). DAPI: 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride; GFP: green fluorescent protein; MNCV: motor nerve conduction velocity; MPZ: myelin protein zero; SNCV: sensory nerve conduction velocity; TEM: transmission electron microscope.

To further examine the effect of circ_0002538 on the signs and symptoms of DPN in vivo, we conducted behavioral tests and neurophysiological measurements. Compared with the control vector group, the circ_0002538 group showed improved thermal and mechanical thresholds (Figure 4E and F). Electrophysiological records showed that compared with those of the control group, the sensory and motor nerve conduction velocities of the circ_0002538 group were significantly increased (Figure 4G and H). These results demonstrated that the upregulation of circ_0002538 expression improved the function of the sciatic nerve in diabetic mice with DPN. Transmission electron microscopy revealed that the percentage of abnormal myelin sheaths, which manifested as myelin infoldings, vacuolization, and uneven thickness, increased in the DPN group but significantly decreased in the circ_0002538 group (Figure 4I and J). These results suggest that the overexpression of circ_0002538 ameliorated the symptoms of DPN by improving myelination.

Overexpression of circ_0002538 increases PLLP expression

To examine the effect of circ_0002538 on myelination-related proteins, we detected the expression of serine incorporator 5, PLLP, gap junction protein gamma 3, proteolipid protein 1, periaxin, and MPZ in the circ_0002538-overexpressing SCs because protein profiling indicated that these molecules are dysregulated in DPN. RT-PCR showed that circ_0002538 regulated the expression of PLLP, gap junction protein gamma 3, and proteolipid protein 1, and PLLP showed the greatest FC (Figure 5A). Western blotting further revealed that knocking down circ_0002538 led to the downregulation of PLLP expression (Figure 5B left). Accordingly, the overexpression of circ_0002538 increased PLLP protein expression in SCs (Figure 5B right). These results confirmed that circ_0002538 could regulate the expression of PLLP.

To simulate diabetic conditions, we added ox-LDL to the culture medium. RT-PCR revealed decreased PLLP expression in the ox-LDL-cultured SCs. We used 100-μg/mL ox-LDL in the following experiments because it produced a more significant effect (Figure 5C and D). RT-PCR showed that the overexpression of circ_0002538 increased PLLP expression in the SCs cultured with ox-LDL. This was further confirmed by western blotting (Figure 5E and F). We also investigated PLLP expression in the nerve tissues from the patients with DPN via western blots. PLLP expression was significantly downregulated in the nerve tissues of the patients with DPN compared with those without DPN (Figure 5G and H). In addition, the administration of circ_0002538 LV significantly increased the expression of PLLP in the sciatic nerve of the mice with DPN compared with the administration of control LV (Figure 5I and J). These results indicated that circ_0002538 could regulate the expression of PLLP in vitro and in vivo.

PLLP regulates SC migration and myelination

To further verify the role of PLLP in SCs, we transfected a lentiviral vector containing the PLLP gene into SCs. RT-PCR showed that the PLLP overexpression cells had significantly increased PLLP expression, which was further confirmed by the western blotting results (Figure 6A and B). We performed a mRNA-sequencing analysis of the SCs transduced with the LV carrying either PLLP or the control vector. A total of 23448 mRNAs were identified, and 1671 mRNAs met the filtering criteria (P < 0.05, FC ≥ 2) (Additional Table 10 (2MB, pdf) ). The filtered mRNAs were further analyzed using GO analysis for functional prediction (Additional Tables 11 (441.8KB, pdf) 13). GO biological process analysis showed that the filtered mRNAs were significantly enriched in neutrophil migration, regulation of neutrophil migration, positive regulation of neutrophil migration, and positive regulation of leukocyte migration, indicating that PLLP might be related to cell migration (Additional Figure 4A (2.9MB, tif) ). Transwell assays confirmed that the overexpression of PLLP significantly increased SC migration (Figure 6C and D). We further validated the role of PLLP by knocking it down. RT-PCR revealed that PLLP expression was decreased in PLLP knockdown SCs (Figure 6E). Transwell assays showed that the knockdown of PLLP effectively inhibited SC migration (Figure 6F and G). These results indicate that PLLP affects SC migration.

Figure 6.

Figure 6

PLLP regulates SC migration and myelination.

(A, B) RT-PCR and western blotting showed that PLLP expression was increased in the SCs transfected with LV-PLLP. Y-axis: fold changes in mRNA expression compared with the vector group. *P < 0.05, vs. vector group (independent-sample t-test). (C, D) Transwell assays revealed that the number of migrating SCs in the PLLP group was greater than that in the vector group. **P < 0.01, vs. vector group (independent-sample t-test). Scale bars: 100 μm. (E) RT-PCR analysis showed that the mRNA expression of PLLP was decreased in PLLP knockdown SCs. Y-axis: fold changes in mRNA expression compared with the vector group. *P < 0.05, vs. vector group (independent-sample t-test). (F, G) The number of migrating SCs in the sh-PLLP group was low compared with that in the vector group in the Transwell assays. **P < 0.01, vs. vector group (independent-sample t-test). Scale bars: 100 μm. (H) Eight weeks after the injection of LV-vector or LV-sh-PLLP, PLLP expression was examined via western blotting (n = 3). (I) Quantification of PLLP by the densitometry of protein bands. *P < 0.05, vs. vector group (paired t-test). (J) The number of abnormal myelin sheaths in the sh-PLLP group, measured via transmission electron microscopy, was higher than that in the vector group (n = 4). Arrows point to abnormal myelin sheaths. Scale bars: 5 μm. (K) Quantification of the ratio of myelin abnormalities in J. The data are given as the mean ± SD. **P < 0.01, vs. vector group (paired t-test). LV: Lentivirus; PLLP: plasmolipin; sh-PLLP: short hairpin RNA for PLLP; TEM: transmission electron microscope.

Additional Table 13.

GO molecular function analysis of filtered mRNAs

ONTOLOGY GOID Description GeneRatio BgRatio pvalue p.adjust geneID Count
MF GO:0005125 cytokine activity 23/646 218/17258 7.74E-06 0.00276242 CXCL11/TNFSF10/TNFSF13/IL1A/IL1B/INHA/EBI3/EDN1/NRG1/AREG/IL6/IL7/LIF/CXCL6/CXCL8/CXCL1/CXCL3/CXCL5/CCL7/TNFRSF11B/CSF3/CCL20/IL12A 23
MF GO:0048018 receptor ligand activity 37/646 454/17258 8.15E-06 0.00276242 CXCL11/TNFSF10/TNFSF13/IL1A/IL1B/INHA/EBI3/EDN1/ADA2/ERFE/EREG/PTHLH/SFRP2/NRG1/NRG2/NRG4/AREG/FNDC5/AMH/IL6/IL7/LIF/CXCL6/CXCL8/CXCL1/CXCL3/CXCL5/SPX/UCN/GHRL/CCL7/TNFRSF11B/PSPN/CSF3/CCL20/EPHA7/IL12A 37
MF GO:0030545 receptor regulator activity 38/646 483/17258 1.38E-05 0.00276242 CXCL11/TNFSF10/TNFSF13/IL1A/IL1B/INHA/EBI3/EDN1/ADA2/ERFE/EREG/PTHLH/SFRP2/NRG1/NRG2/NRG4/AREG/FNDC5/AMH/IL6/IL7/LIF/CXCL6/CXCL8/CXCL1/CXCL3/CXCL5/WFIKKN1/SPX/UCN/GHRL/CCL7/TNFRSF11B/PSPN/CSF3/CCL20/EPHA7/IL12A 38
MF GO:0045236 CXCR chemokine receptor binding 6/646 16/17258 1.56E-05 0.00276242 CXCL11/CXCL6/CXCL8/CXCL1/CXCL3/CXCL5 6
MF GO:0008009 chemokine activity 8/646 46/17258 0.00027339 0.02748107 CXCL11/CXCL6/CXCL8/CXCL1/CXCL3/CXCL5/CCL7/CCL20 8
MF GO:0022836 gated channel activity 26/646 332/17258 0.00033158 0.02748107 CHRNE/CHRNA10/TRPV4/KCND1/KCNG2/KCNE3/KCNQ5/ANO1/ASIC3/JPH2/GRID2/GRIK5/GABRA2/GABRA5/SCN1A/SCN3B/SCN3A/P2RX6/GRIN2C/GRIN2D/GRIN3A/PIEZO2/CLIC6/CLIC2/CATSPER1/GPR89B 26
MF GO:0005231 excitatory extracellular ligand-gatedion channel activity 8/646 48/17258 0.0003702 0.02748107 CHRNE/CHRNA10/GRID2/GRIK5/P2RX6/GRIN2C/GRIN2D/GRIN3A 8
MF GO:0005230 extracellular ligand-gated ionchannel activity 10/646 75/17258 0.00046517 0.02748107 CHRNE/CHRNA10/GRID2/GRIK5/GABRA2/GABRA5/P2RX6/GRIN2C/GRIN2D/GRIN3A 10
MF GO:0043178 alcohol binding 10/646 75/17258 0.00046517 0.02748107 TRPC4/RBP4/RBP1/APOE/NR1H3/SYP/CETP/LRAT/PROM2/OSBP2 10
MF GO:0022824 transmitter-gated ion channelactivity 8/646 50/17258 0.00049322 0.02748107 CHRNE/CHRNA10/GRID2/GRIK5/GABRA2/GRIN2C/GRIN2D/GRIN3A 8
MF GO:0022835 transmitter-gated channel activity 8/646 50/17258 0.00049322 0.02748107 CHRNE/CHRNA10/GRID2/GRIK5/GABRA2/GRIN2C/GRIN2D/GRIN3A 8
MF GO:0005520 insulin-like growth factor binding 6/646 28/17258 0.00050026 0.02748107 HTRA4/WISP1/IGFBP5/KAZALD1/ITGB4/ITGA6 6
MF GO:0004970 ionotropic glutamate receptoractivity 5/646 19/17258 0.00054341 0.02748107 GRID2/GRIK5/GRIN2C/GRIN2D/GRIN3A 5
MF GO:0005234 extracellularly glutamate-gated ionchannel activity 5/646 19/17258 0.00054341 0.02748107 GRID2/GRIK5/GRIN2C/GRIN2D/GRIN3A 5
MF GO:0005201 extracellular matrix structuralconstituent 10/646 78/17258 0.00063874 0.03014845 COL14A1/HAPLN3/COL19A1/TECTA/ENAM/ELN/CHI3L1/COL5A3/COL4A3/MATN3 10
MF GO:0005216 ion channel activity 30/646 425/17258 0.00069167 0.03025376 CHRNE/CHRNA10/TRPC4/TRPV4/KCND1/KCNG2/KCNE3/KCNQ5/LRRC8E/SLC40A1/ANO1/ASIC3/JPH2/GRID2/GRIK5/ABCC9/GABRA2/GABRA5/SCN1A/SCN3B/SCN3A/P2RX6/GRIN2C/GRIN2D/GRIN3A/PIEZO2/CLIC6/CLIC2/CATSPER1/GPR89B 30
MF GO:0015267 channel activity 32/646 466/17258 0.00074207 0.03025376 CHRNE/CHRNA10/TRPC4/TRPV4/KCND1/KCNG2/KCNE3/KCNQ5/LRRC8E/SLC40A1/ANO1/ASIC3/JPH2/GRID2/GRIK5/ABCC9/GABRA2/GABRA5/SCN1A/SCN3B/SCN3A/BCL2A1/P2RX6/GJB7/GRIN2C/GRIN2D/GRIN3A/PIEZO2/CLIC6/CLIC2/CATSPER1/GPR89B 32
MF GO:0022803 passive transmembrane transporteractivity 32/646 467/17258 0.00076916 0.03025376 CHRNE/CHRNA10/TRPC4/TRPV4/KCND1/KCNG2/KCNE3/KCNQ5/LRRC8E/SLC40A1/ANO1/ASIC3/JPH2/GRID2/GRIK5/ABCC9/GABRA2/GABRA5/SCN1A/SCN3B/SCN3A/BCL2A1/P2RX6/GJB7/GRIN2C/GRIN2D/GRIN3A/PIEZO2/CLIC6/CLIC2/CATSPER1/GPR89B 32
MF GO:0022838 substrate-specific channel activity 30/646 435/17258 0.00100299 0.03737468 CHRNE/CHRNA10/TRPC4/TRPV4/KCND1/KCNG2/KCNE3/KCNQ5/LRRC8E/SLC40A1/ANO1/ASIC3/JPH2/GRID2/GRIK5/ABCC9/GABRA2/GABRA5/SCN1A/SCN3B/SCN3A/P2RX6/GRIN2C/GRIN2D/GRIN3A/PIEZO2/CLIC6/CLIC2/CATSPER1/GPR89B 30
MF GO:0015245 fatty acid transporter activity 4/646 13/17258 0.00106137 0.03757264 MFSD2A/SLCO2A1/FABP3/SLC27A5 4
MF GO:0008083 growth factor activity 15/646 162/17258 0.00113973 0.03842505 INHA/ADA2/EREG/NRG1/NRG2/NRG4/AREG/AMH/IL6/IL7/LIF/CXCL1/PSPN/CSF3/IL12A 15
MF GO:0042379 chemokine receptor binding 8/646 58/17258 0.00135494 0.04360441 CXCL11/CXCL6/CXCL8/CXCL1/CXCL3/CXCL5/CCL7/CCL20 8
MF GO:0008499 UDP-galactose:beta-N-acetylglucosamine beta-1,3-galactosyltransferase activity 4/646 14/17258 0.0014422 0.04439455 B3GALT2/B3GALT1/B3GALT5/B3GNT4 4
MF GO:0005261 cation channel activity 23/646 314/17258 0.00174445 0.05146139 CHRNE/CHRNA10/TRPC4/TRPV4/KCND1/KCNG2/KCNE3/KCNQ5/SLC40A1/ANO1/ASIC3/JPH2/GRIK5/ABCC9/SCN1A/SCN3B/SCN3A/P2RX6/GRIN2C/GRIN2D/GRIN3A/PIEZO2/CATSPER1 23
MF GO:0005319 lipid transporter activity 13/646 141/17258 0.0024669 0.06573686 SLC10A4/RBP4/TMEM30B/APOE/MFSD2A/SLCO2A1/ABCB4/FABP3/SPNS2/CETP/PITPNM3/SLC27A5/ATP10B 13
MF GO:0048531 beta-1,3-galactosyltransferaseactivity 4/646 16/17258 0.00247041 0.06573686 B3GALT2/B3GALT1/B3GALT5/B3GNT4 4
MF GO:0005126 cytokine receptor binding 20/646 266/17258 0.00250691 0.06573686 CXCL11/TNFSF10/TNFSF13/IL1A/IL1B/INHA/EBI3/AMH/IL6/IL7/LIF/CXCL6/CXCL8/CXCL1/CXCL3/CXCL5/CCL7/CSF3/CCL20/IL12A 20
MF GO:0008066 glutamate receptor activity 5/646 27/17258 0.00294555 0.07448045 GRID2/GRIK5/GRIN2C/GRIN2D/GRIN3A 5
MF GO:0019838 growth factor binding 12/646 130/17258 0.00352661 0.08609797 HTRA4/WISP1/FLT4/A2M/ACVR1C/WFIKKN1/S100A13/IGFBP5/KAZALD1/HAP1/ITGB4/ITGA6 12
MF GO:0004222 metalloendopeptidase activity 11/646 115/17258 0.00389625 0.09195151 PAPLN/MMP3/MMP8/TMPRSS6/KEL/ADAMTS14/ADAMTS19/MMP10/TLL2/ADAM28/ADAM33 11
MF GO:0001664 G-protein coupled receptor binding 19/646 260/17258 0.00432576 0.09879484 C3/CXCL11/RAMP1/EDN1/ADA2/WNT16/CXCL6/CXCL8/CXCL1/CXCL3/CXCL5/UCN/NECAB2/GHRL/GNAZ/CCL7/CCL20/GPRC5B/ITGB4 19
MF GO:0015485 cholesterol binding 6/646 43/17258 0.00503575 0.11141589 APOE/NR1H3/SYP/CETP/PROM2/OSBP2 6
MF GO:0015276 ligand-gated ion channel activity 12/646 139/17258 0.00602901 0.12554528 CHRNE/CHRNA10/ASIC3/JPH2/GRID2/GRIK5/GABRA2/GABRA5/P2RX6/GRIN2C/GRIN2D/GRIN3A 12
MF GO:0022834 ligand-gated channel activity 12/646 139/17258 0.00602901 0.12554528 CHRNE/CHRNA10/ASIC3/JPH2/GRID2/GRIK5/GABRA2/GABRA5/P2RX6/GRIN2C/GRIN2D/GRIN3A 12
MF GO:0061135 endopeptidase regulator activity 14/646 177/17258 0.00682657 0.13526148 C3/SERPINE3/SERPINF1/PAPLN/SERPINB12/BIRC3/SFRP2/NLRC4/A2M/WFIKKN1/COL4A3/SPINT2/SPINT1/HMSD 14
MF GO:0086080 protein binding involved inheterotypic cell-cell adhesion 3/646 11/17258 0.0068777 0.13526148 DSC2/CXADR/NFASC 3
MF GO:0005496 steroid binding 9/646 92/17258 0.00748345 0.13953101 PAQR5/HSD11B2/ESR1/APOE/NR1H3/SYP/CETP/PROM2/OSBP2 9
MF GO:0005244 voltage-gated ion channel activity 15/646 198/17258 0.00768603 0.13953101 KCND1/KCNG2/KCNE3/KCNQ5/ANO1/SCN1A/SCN3B/SCN3A/GRIN2C/GRIN2D/GRIN3A/CLIC6/CLIC2/CATSPER1/GPR89B 15
MF GO:0022832 voltage-gated channel activity 15/646 198/17258 0.00768603 0.13953101 KCND1/KCNG2/KCNE3/KCNQ5/ANO1/SCN1A/SCN3B/SCN3A/GRIN2C/GRIN2D/GRIN3A/CLIC6/CLIC2/CATSPER1/GPR89B 15
MF GO:0004867 serine-type endopeptidase inhibitoractivity 9/646 93/17258 0.00801867 0.14030831 SERPINE3/SERPINF1/PAPLN/SERPINB12/A2M/WFIKKN1/SPINT2/SPINT1/HMSD 9
MF GO:0004497 monooxygenase activity 9/646 94/17258 0.00858253 0.14030831 CYP4F3/CYP2W1/CYP4X1/AGMO/FMO2/FMO3/CYP11A1/CYP1A1/CYP27A1 9
MF GO:0032934 sterol binding 6/646 48/17258 0.00866409 0.14030831 APOE/NR1H3/SYP/CETP/PROM2/OSBP2 6
MF GO:0005178 integrin binding 10/646 111/17258 0.00874837 0.14030831 ICAM5/WISP1/SFRP2/NRG1/MADCAM1/CXADR/COL4A3/VWF/LCP1/ITGA6 10
MF GO:0005542 folic acid binding 3/646 12/17258 0.0089179 0.14030831 FTCD/GNMT/FTCDNL1 3
MF GO:0031994 insulin-like growth factor I binding 3/646 12/17258 0.0089179 0.14030831 IGFBP5/ITGB4/ITGA6 3
MF GO:0099094 ligand-gated cation channel activity 8/646 80/17258 0.01002526 0.15430186 CHRNE/CHRNA10/ASIC3/JPH2/GRIK5/GRIN2C/GRIN2D/GRIN3A 8
MF GO:0008237 metallopeptidase activity 14/646 186/17258 0.01035614 0.15600316 PAPLN/MMP3/MMP8/TMPRSS6/KEL/ADAMTS14/ADAMTS19/MMP10/TLL2/ADAM28/ADAM33/CPB2/CPA5/CPA4 14
MF GO:0043225 ATPase-coupled aniontransmembrane transporter activity 3/646 13/17258 0.01127486 0.16630417 ABCC2/ABCC6/ABCC9 3
MF GO:0004866 endopeptidase inhibitor activity 13/646 171/17258 0.0122209 0.17657951 C3/SERPINE3/SERPINF1/PAPLN/SERPINB12/BIRC3/NLRC4/A2M/WFIKKN1/COL4A3/SPINT2/SPINT1/HMSD 13
MF GO:0098631 cell adhesion mediator activity 5/646 38/17258 0.01307493 0.18514099 DSC2/MADCAM1/CXADR/EPCAM/NFASC 5
MF GO:0019841 retinol binding 3/646 14/17258 0.01395649 0.19374899 RBP4/RBP1/LRAT 3
MF GO:0005507 copper ion binding 6/646 55/17258 0.01644908 0.22396053 SNAI3/IL1A/AOC2/SCO2/SOD3/S100A13 6
MF GO:0005548 phospholipid transporter activity 6/646 56/17258 0.01785861 0.23656451 TMEM30B/MFSD2A/ABCB4/CETP/PITPNM3/ATP10B 6
MF GO:0030414 peptidase inhibitor activity 13/646 180/17258 0.01804306 0.23656451 C3/SERPINE3/SERPINF1/PAPLN/SERPINB12/BIRC3/NLRC4/A2M/WFIKKN1/COL4A3/SPINT2/SPINT1/HMSD 13
MF GO:0046873 metal ion transmembranetransporter activity 26/646 449/17258 0.01887147 0.24292727 SLC10A4/SLC11A1/CHRNA10/TRPC4/TRPV4/KCND1/KCNG2/KCNE3/KCNQ5/SLC40A1/ASIC3/JPH2/GRIK5/SLC5A2/SLC1A2/ABCC9/SLC34A3/SCN1A/SCN3B/SCN3A/GRIN2C/GRIN2D/GRIN3A/ATP2C2/CLDN16/CATSPER1 26
MF GO:0048038 quinone binding 3/646 16/17258 0.0203141 0.25682829 VKORC1/AOC2/NDUFS7 3
MF GO:0043492 ATPase activity, coupled tomovement of substances 10/646 129/17258 0.02311831 0.28715375 ATP6V1C2/ABCB6/ABCB4/ABCC2/ABCC6/ABCC9/ATP6V0C/ATP6AP1L/ATP10B/ATP2C2 10
MF GO:0035250 UDP-galactosyltransferase activity 4/646 30/17258 0.02462161 0.30016121 B3GALT2/B3GALT1/B3GALT5/B3GNT4 4
MF GO:0042625 ATPase coupled ion transmembranetransporter activity 7/646 77/17258 0.02501343 0.30016121 ATP6V1C2/ABCC2/ABCC6/ABCC9/ATP6V0C/ATP6AP1L/ATP2C2 7
MF GO:0005272 sodium channel activity 5/646 45/17258 0.02573771 0.30370495 ASIC3/GRIK5/SCN1A/SCN3B/SCN3A 5
MF GO:0022853 active ion transmembranetransporter activity 10/646 132/17258 0.02659957 0.30856562 SLC10A4/ATP6V1C2/SLC1A2/ABCC2/ABCC6/ABCC9/SLC34A3/ATP6V0C/ATP6AP1L/ATP2C2 10
MF GO:0042626 ATPase activity, coupled totransmembrane movement ofsubstances 9/646 114/17258 0.02730206 0.30856562 ATP6V1C2/ABCB6/ABCB4/ABCC2/ABCC6/ABCC9/ATP6V0C/ATP6AP1L/ATP2C2 9
MF GO:0098632 cell-cell adhesion mediator activity 4/646 31/17258 0.02745711 0.30856562 DSC2/CXADR/EPCAM/NFASC 4
MF GO:0016820 hydrolase activity, acting on acidanhydrides, catalyzingtransmembrane movement ofsubstances 9/646 116/17258 0.03010289 0.33136558 ATP6V1C2/ABCB6/ABCB4/ABCC2/ABCC6/ABCC9/ATP6V0C/ATP6AP1L/ATP2C2 9
MF GO:0005544 calcium-dependent phospholipidbinding 5/646 47/17258 0.03042198 0.33136558 RPH3AL/C2CD4D/SYT17/SYTL3/ANXA8L1 5
MF GO:0030594 neurotransmitter receptor activity 8/646 99/17258 0.03218147 0.34196627 CHRNE/CHRNA10/GRID2/GRIK5/GABRA2/GRIN2C/GRIN2D/GRIN3A 8
MF GO:0016289 CoA hydrolase activity 3/646 19/17258 0.03236122 0.34196627 NUDT7/THEM5/ACOT1 3
MF GO:0061134 peptidase regulator activity 14/646 216/17258 0.03297354 0.34331273 C3/SERPINE3/SERPINF1/PAPLN/SERPINB12/BIRC3/SFRP2/NLRC4/A2M/WFIKKN1/COL4A3/SPINT2/SPINT1/HMSD 14
MF GO:0008378 galactosyltransferase activity 4/646 34/17258 0.03709021 0.36985726 B3GALT2/B3GALT1/B3GALT5/B3GNT4 4
MF GO:0008395 steroid hydroxylase activity 4/646 34/17258 0.03709021 0.36985726 CYP2W1/CYP11A1/CYP1A1/CYP27A1 4
MF GO:0016709 oxidoreductase activity, acting onpaired donors, with incorporation orreduction of molecular oxygen,NAD(P)H as one donor, andincorporation of one atom of oxygen 4/646 34/17258 0.03709021 0.36985726 CYP4F3/FMO2/FMO3/CYP1A1 4
MF GO:0005179 hormone activity 9/646 121/17258 0.03796825 0.37335449 INHA/EDN1/ERFE/PTHLH/FNDC5/AMH/SPX/UCN/GHRL 9
MF GO:0015399 primary active transmembranetransporter activity 9/646 123/17258 0.04147331 0.38661999 ATP6V1C2/ABCB6/ABCB4/ABCC2/ABCC6/ABCC9/ATP6V0C/ATP6AP1L/ATP2C2 9
MF GO:0015405 P-P-bond-hydrolysis-driventransmembrane transporter activity 9/646 123/17258 0.04147331 0.38661999 ATP6V1C2/ABCB6/ABCB4/ABCC2/ABCC6/ABCC9/ATP6V0C/ATP6AP1L/ATP2C2 9
MF GO:0001614 purinergic nucleotide receptoractivity 3/646 21/17258 0.04204765 0.38661999 P2RY6/P2RY2/P2RX6 3
MF GO:0016502 nucleotide receptor activity 3/646 21/17258 0.04204765 0.38661999 P2RY6/P2RY2/P2RX6 3
MF GO:0046961 proton-transporting ATPase activity,rotational mechanism 3/646 21/17258 0.04204765 0.38661999 ATP6V1C2/ATP6V0C/ATP6AP1L 3

To verify the effect of PLLP on peripheral nerve myelination in vivo, we injected sh-PLLP LV into the mouse sciatic nerve. Western blotting revealed that PLLP was decreased in the PLLP knockdown group compared with the control vector group (Figure 6H and I). The ratio of myelin abnormalities was strongly increased in the PLLP knockdown group, as shown by transmission electron microscopy (Figure 6J and K). These results indicate that PLLP might regulate myelination in peripheral nerves.

circ_0002538 serves as a sponge for miR-138-5p in SCs

The most common function of circRNAs is to act as sponges for miRNAs, thus regulating downstream target genes. We located circ_0002538 in cellular components via nuclear and cytoplasmic separation experiments. RT-PCR analysis showed that circ_0002538 was predominantly localized in the cytoplasm (Figure 7A), indicating that it might target specific miRNAs to regulate PLLP expression. Forty-eight candidate miRNAs were predicted to bind to PLLP and 130 candidate miRNAs were predicted to bind to circ_0002538 (Additional Tables 14 and 15). After overlapping the candidate miRNAs of PLLP and the candidate miRNAs of circ_0002538, only two miRNAs (miR-138-5p and miR-3714) were found (Figure 7B). We conducted pulldown assays using the biotinylated circ_0002538 probe to verify the interaction between circ_0002538 and the two candidate miRNAs. The circ_0002538 probe effectively pulled down circ_0002538 (Figure 7C), and miR-138-5p was significantly enriched in the circ_0002538 probe sponge complex, while miR-3714 was not significantly enriched (Figure 7D). RT-PCR and agarose gel electrophoresis confirmed that the miR-138-5p probe could prominently pull down circ_0002538 (Figure 7E and F). We further verified this interaction using a dual-luciferase reporter assay. A schematic model showed the putative binding site of circ_0002538 and miR-138-5p (Figure 7G). Luciferase reporter assays demonstrated that miR-138-5p decreased the luciferase activity of HEK293T cells in the wild-type circ_0002538 group but had no effect in the mutant group (Figure 7H), demonstrating the direct binding between circ_0002538 and miR-138-5p in SCs. Taken together, these data demonstrate that circ_0002538 acts as a miRNA sponge for miR-138-5p in SCs.

Figure 7.

Figure 7

circ_0002538 acts as a sponge for miR-138-5p in SCs.

(A) Nuclear and cytoplasmic separation assays detecting the localization of circ_0002538 in SCs. Y-axis: proportion of nuclear and cytoplasmic RNA to total RNA. (B) Venn diagram showing the overlap of circ_0002538 candidate miRNAs and PLLP candidate miRNAs. (C) circ_0002538 was pulled down in SC lysates by the biotin-circ_0002538 probe and detected via RT-PCR. The relative level of circ_0002538 was normalized to the input. Y-axis: fold changes in circ_0002538 expression compared with the biotin-NC group. ***P < 0.001, vs. Biotin-NC group (independent-sample t-test). (D) miR-138-5p was pulled down by the biotin-circ_0002538 probe, while miR-3714 was not, as shown by the RT-PCR. Y-axis: fold changes in miRNAs expression compared with the biotin-NC group. **P < 0.01, vs. Biotin-NC group (independent-sample t-test). (E, F) circ_0002538 was pulled down in SC lysates by the biotin-miR-138-5p probe, as shown by RT-PCR. The relative level of circ_0002538 was normalized to the input. Y-axis: fold changes in circ_0002538 expression compared with the biotin-NC group. **P < 0.01, vs. Biotin-NC group (independent-sample t-test). (G) The miR-138-5p binding site of circ_0002538 was predicted via RNAhybrid. The mutant sequences are marked in red. (H) Dual-luciferase reporter assays of HEK293T cells cotransfected with miR-138-5p mimics, circ_0002538 wild-type (circ_0002538-wt), or circ_0002538 mutant type (circ_0002538-mut) plasmids. Y-axis: relative luciferase activity compared with the miR-NC + circ_0002538-wt group. ***P < 0.001, vs. miR-NC group (one-way analysis of variance and Tukey’s post hoc test). All bar graphs represent the average of three independent replicates, and the error bars are the SD. GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; mut: mutant type; NC: normal control; PLLP: plasmolipin; U3: small nucleolar U3 RNA; wt: wild-type.

Additional Table 14.

Candidate miRNAs binding to circ_0002538 predicted by RNAhybrid, miRanda and TargetScan

circRNA miRNA miRanda targetscan RNAhybrid
hsa_circ_0002538 hsa-miR-519e-5p 0 1 1
hsa_circ_0002538 hsa-miR-3659 0 1 1
hsa_circ_0002538 hsa-miR-4659a-3p 1 0 1
hsa_circ_0002538 hsa-miR-548q 0 1 1
hsa_circ_0002538 hsa-let-7g-3p 1 1 0
hsa_circ_0002538 hsa-miR-449c-5p 0 1 1
hsa_circ_0002538 hsa-miR-3691-5p 1 0 1
hsa_circ_0002538 hsa-miR-513c-5p 1 1 1
hsa_circ_0002538 hsa-miR-376b-3p 0 1 1
hsa_circ_0002538 hsa-miR-298 1 1 1
hsa_circ_0002538 hsa-miR-6858-5p 0 1 1
hsa_circ_0002538 hsa-miR-6501-5p 0 1 1
hsa_circ_0002538 hsa-miR-1910-3p 1 1 1
hsa_circ_0002538 hsa-miR-548as-3p 1 1 1
hsa_circ_0002538 hsa-miR-6826-3p 0 1 1
hsa_circ_0002538 hsa-miR-211-5p 1 0 1
hsa_circ_0002538 hsa-miR-181c-3p 1 1 1
hsa_circ_0002538 hsa-miR-145-3p 1 1 1
hsa_circ_0002538 hsa-miR-4677-5p 0 1 1
hsa_circ_0002538 hsa-miR-4650-3p 0 1 1
hsa_circ_0002538 hsa-miR-6831-5p 1 1 1
hsa_circ_0002538 hsa-miR-548ay-3p 0 1 1
hsa_circ_0002538 hsa-miR-6770-5p 0 1 1
hsa_circ_0002538 hsa-miR-6879-5p 1 0 1
hsa_circ_0002538 hsa-miR-3689a-5p 1 0 1
hsa_circ_0002538 hsa-miR-3154 0 1 1
hsa_circ_0002538 hsa-miR-1185-5p 0 1 1
hsa_circ_0002538 hsa-miR-4632-5p 1 0 1
hsa_circ_0002538 hsa-miR-3689b-5p 1 0 1
hsa_circ_0002538 hsa-miR-6873-5p 1 0 1
hsa_circ_0002538 hsa-miR-6758-5p 1 1 1
hsa_circ_0002538 hsa-miR-3127-3p 0 1 1
hsa_circ_0002538 hsa-miR-4446-5p 0 1 1
hsa_circ_0002538 hsa-miR-489-3p 1 1 1
hsa_circ_0002538 hsa-miR-4436b-3p 1 0 1
hsa_circ_0002538 hsa-miR-7978 0 1 1
hsa_circ_0002538 hsa-miR-3927-3p 0 1 1
hsa_circ_0002538 hsa-miR-6878-5p 1 0 1
hsa_circ_0002538 hsa-miR-4458 1 0 1
hsa_circ_0002538 hsa-miR-4451 0 1 1
hsa_circ_0002538 hsa-miR-4453 0 1 1
hsa_circ_0002538 hsa-miR-4456 0 1 1
hsa_circ_0002538 hsa-miR-6827-5p 1 0 1
hsa_circ_0002538 hsa-miR-450b-5p 0 1 1
hsa_circ_0002538 hsa-miR-204-5p 1 0 1
hsa_circ_0002538 hsa-miR-130a-5p 1 1 1
hsa_circ_0002538 hsa-miR-4301 0 1 1
hsa_circ_0002538 hsa-miR-197-5p 1 1 1
hsa_circ_0002538 hsa-miR-3670 0 1 1
hsa_circ_0002538 hsa-miR-574-5p 1 1 1
hsa_circ_0002538 hsa-miR-877-3p 0 1 1
hsa_circ_0002538 hsa-miR-4504 0 1 1
hsa_circ_0002538 hsa-miR-376a-3p 0 1 1
hsa_circ_0002538 hsa-miR-6777-3p 0 1 1
hsa_circ_0002538 hsa-miR-589-5p 0 1 1
hsa_circ_0002538 hsa-miR-3913-3p 0 1 1
hsa_circ_0002538 hsa-miR-3118 0 1 1
hsa_circ_0002538 hsa-miR-4299 0 1 1
hsa_circ_0002538 hsa-miR-1304-5p 0 1 1
hsa_circ_0002538 hsa-miR-3162-5p 1 0 1
hsa_circ_0002538 hsa-miR-127-5p 0 1 1
hsa_circ_0002538 hsa-let-7a-2-3p 1 1 0
hsa_circ_0002538 hsa-miR-5197-3p 0 1 1
hsa_circ_0002538 hsa-miR-146b-5p 0 1 1
hsa_circ_0002538 hsa-miR-185-5p 1 0 1
hsa_circ_0002538 hsa-miR-4769-3p 1 1 0
hsa_circ_0002538 hsa-miR-22-5p 0 1 1
hsa_circ_0002538 hsa-miR-10526-3p 0 1 1
hsa_circ_0002538 hsa-miR-3925-5p 1 1 1
hsa_circ_0002538 hsa-miR-3059-5p 0 1 1
hsa_circ_0002538 hsa-miR-6817-5p 1 1 1
hsa_circ_0002538 hsa-miR-2116-5p 0 1 1
hsa_circ_0002538 hsa-miR-892c-5p 0 1 1
hsa_circ_0002538 hsa-miR-4689 0 1 1
hsa_circ_0002538 hsa-miR-6885-3p 0 1 1
hsa_circ_0002538 hsa-miR-605-3p 1 1 1
hsa_circ_0002538 hsa-miR-6735-5p 1 0 1
hsa_circ_0002538 hsa-miR-4659b-5p 0 1 1
hsa_circ_0002538 hsa-miR-4306 1 0 1
hsa_circ_0002538 hsa-miR-4658 1 1 1
hsa_circ_0002538 hsa-miR-3610 1 0 1
hsa_circ_0002538 hsa-miR-616-5p 1 1 0
hsa_circ_0002538 hsa-miR-6782-5p 1 0 1
hsa_circ_0002538 hsa-miR-548ag 0 1 1
hsa_circ_0002538 hsa-miR-1267 0 1 1
hsa_circ_0002538 hsa-miR-3689e 1 0 1
hsa_circ_0002538 hsa-miR-4661-3p 0 1 1
hsa_circ_0002538 hsa-miR-6808-5p 1 1 1
hsa_circ_0002538 hsa-miR-384 0 1 1
hsa_circ_0002538 hsa-miR-4659b-3p 1 0 1
hsa_circ_0002538 hsa-miR-3907 0 1 1
hsa_circ_0002538 hsa-miR-6511a-5p 1 1 1
hsa_circ_0002538 hsa-miR-6884-3p 0 1 1
hsa_circ_0002538 hsa-miR-616-3p 1 0 1
hsa_circ_0002538 hsa-miR-138-5p 1 1 1
hsa_circ_0002538 hsa-miR-6780a-3p 0 1 1
hsa_circ_0002538 hsa-miR-2117 0 1 1
hsa_circ_0002538 hsa-miR-3164 1 1 1
hsa_circ_0002538 hsa-miR-3714 0 1 1
hsa_circ_0002538 hsa-miR-142-3p 1 0 1
hsa_circ_0002538 hsa-miR-6808-3p 0 1 1
hsa_circ_0002538 hsa-miR-3680-5p 1 0 1
hsa_circ_0002538 hsa-miR-4786-3p 0 1 1
hsa_circ_0002538 hsa-miR-744-3p 0 1 1
hsa_circ_0002538 hsa-miR-4695-5p 1 0 1
hsa_circ_0002538 hsa-miR-4758-5p 0 1 1
hsa_circ_0002538 hsa-miR-6880-5p 1 0 1
hsa_circ_0002538 hsa-miR-3132 1 1 1
hsa_circ_0002538 hsa-miR-146a-5p 0 1 1
hsa_circ_0002538 hsa-miR-6856-5p 1 1 1
hsa_circ_0002538 hsa-miR-8070 0 1 1
hsa_circ_0002538 hsa-miR-4423-5p 1 1 1
hsa_circ_0002538 hsa-miR-136-5p 1 1 1
hsa_circ_0002538 hsa-miR-6755-5p 0 1 1
hsa_circ_0002538 hsa-miR-6745 1 0 1
hsa_circ_0002538 hsa-miR-4289 1 1 1
hsa_circ_0002538 hsa-miR-134-5p 0 1 1
hsa_circ_0002538 hsa-miR-6832-5p 1 1 1
hsa_circ_0002538 hsa-miR-2682-5p 0 1 1
hsa_circ_0002538 hsa-miR-6893-5p 1 1 1
hsa_circ_0002538 hsa-miR-576-3p 0 1 1
hsa_circ_0002538 hsa-miR-6760-5p 1 0 1
hsa_circ_0002538 hsa-miR-507 0 1 1
hsa_circ_0002538 hsa-miR-3935 0 1 1
hsa_circ_0002538 hsa-miR-499a-3p 0 1 1
hsa_circ_0002538 hsa-miR-4732-5p 0 1 1
hsa_circ_0002538 hsa-miR-942-5p 0 1 1
hsa_circ_0002538 hsa-miR-6790-5p 1 1 1
hsa_circ_0002538 hsa-miR-1238-5p 0 1 1
hsa_circ_0002538 hsa-miR-7843-3p 0 1 1

circ_0002538: hsa_circ_0002538; circRNA: circular RNAs; miRNA: microRNA.

Additional Table 15.

The candidate miRNAs binding to PLLP predicted by miRDB, miRTarBase, miRWalk and TargetScan

miRNA ID GENE miRDB miRTarBase miRWalk TargetScan
hsa-miR-6785-5p MIMAT0027470 PLLP 1 1 1 1
hsa-miR-1258 MIMAT0005909 PLLP 1 0 1 1
hsa-miR-1273e MIMAT0018079 PLLP 0 1 1 1
hsa-miR-1289 MIMAT0005879 PLLP 1 0 1 1
hsa-miR-1295b-5p MIMAT0022293 PLLP 0 1 1 1
hsa-miR-138-5p MIMAT0000430 PLLP 1 0 1 1
hsa-miR-1470 MIMAT0007348 PLLP 1 0 1 1
hsa-miR-149-3p MIMAT0004609 PLLP 1 1 1 0
hsa-miR-181a-2-3p MIMAT0004558 PLLP 1 0 1 1
hsa-miR-1827 MIMAT0006767 PLLP 0 1 1 1
hsa-miR-185-3p MIMAT0004611 PLLP 1 0 1 1
hsa-miR-186-3p MIMAT0004612 PLLP 1 0 1 1
hsa-miR-18a-5p MIMAT0000072 PLLP 1 0 1 1
hsa-miR-25-5p MIMAT0004498 PLLP 0 1 1 1
hsa-miR-302f MIMAT0005932 PLLP 0 1 1 1
hsa-miR-30c-1-3p MIMAT0004674 PLLP 0 1 1 1
hsa-miR-3122 MIMAT0014984 PLLP 0 1 1 1
hsa-miR-3714 MIMAT0018165 PLLP 0 1 1 1
hsa-miR-3909 MIMAT0018183 PLLP 1 0 1 1
hsa-miR-3910 MIMAT0018184 PLLP 0 1 1 1
hsa-miR-3937 MIMAT0018352 PLLP 0 1 1 1
hsa-miR-3975 MIMAT0019360 PLLP 0 1 1 1
hsa-miR-4251 MIMAT0016883 PLLP 1 0 1 1
hsa-miR-4283 MIMAT0016914 PLLP 1 0 1 1
hsa-miR-4291 MIMAT0016922 PLLP 1 0 1 1
hsa-miR-4473 MIMAT0019000 PLLP 1 0 1 1
hsa-miR-450a-1-3p MIMAT0022700 PLLP 0 1 1 1
hsa-miR-454-3p MIMAT0003885 PLLP 1 0 1 1
hsa-miR-4667-3p MIMAT0019744 PLLP 1 0 1 1
hsa-miR-4671-3p MIMAT0019753 PLLP 1 0 1 1
hsa-miR-4673 MIMAT0019755 PLLP 1 0 1 1
hsa-miR-4728-5p MIMAT0019849 PLLP 1 1 1 0
hsa-miR-4768-5p MIMAT0019920 PLLP 1 0 1 1
hsa-miR-512-3p MIMAT0002823 PLLP 1 0 1 1
hsa-miR-548az-3p MIMAT0025457 PLLP 1 0 1 1
hsa-miR-582-3p MIMAT0004797 PLLP 1 0 1 1
hsa-miR-6504-3p MIMAT0025465 PLLP 1 0 1 1
hsa-miR-6509-3p MIMAT0025475 PLLP 1 0 1 1
hsa-miR-6513-5p MIMAT0025482 PLLP 0 1 1 1
hsa-miR-654-3p MIMAT0004814 PLLP 1 0 1 1
hsa-miR-6739-5p MIMAT0027379 PLLP 1 0 1 1
hsa-miR-6799-5p MIMAT0027498 PLLP 0 1 1 1
hsa-miR-6829-5p MIMAT0027558 PLLP 1 0 1 1
hsa-miR-6883-5p MIMAT0027666 PLLP 1 1 1 0
hsa-miR-7113-5p MIMAT0028123 PLLP 1 0 1 1
hsa-miR-7162-5p MIMAT0028234 PLLP 1 0 1 1
hsa-miR-887-5p MIMAT0026720 PLLP 0 1 1 1
hsa-miR-940 MIMAT0004983 PLLP 0 1 1 1

PLLP: Plasmolipin.

miR-138-5p inhibits the migration of SCs by targeting PLLP

To investigate the function of miR-138-5p, we transfected miR-138-5p mimic or inhibitor into SCs. In the migration assays, the number of SCs that migrated to the lower chamber was significantly reduced after transfection with the miR-138-5p mimics. In contrast, the miR-138-5p inhibitor enhanced SC migration (Figure 8A and B). Then, we used a dual-luciferase reporter assay to determine whether miR-138-5p could bind to PLLP to regulate its expression. Figure 8C shows the predicted binding sites and mutated sites of miR-138-5p on the 3′UTR of PLLP. The overexpression of miR-138-5p significantly weakened the relative Rluc activity of the wild-type plasmids but not the mutant plasmids (Figure 8D), suggesting that miR-138-5p could directly bind to the PLLP 3′UTR and block its activity. Western blot analysis further demonstrated that the miR-138-5p mimics significantly reduced PLLP protein expression, while the miR-138-5p inhibitors increased PLLP protein expression (Figure 8E). These results revealed that miR-138-5p could strongly suppress SC migration by targeting PLLP.

Figure 8.

Figure 8

miR-138-5p inhibits SC migration by targeting PLLP.

(A) The number of migrating SCs in the miR-138-5p group was less than that in the mimic-NC group via the Transwell assays. Further, the number of migrating SCs in the miR-138-5p-inh group was more than that in the inh-NC group. Scale bars: 100 μm. (B) Quantification of the number of migrating cells in A. *P < 0.05, ***P < 0.001, vs. mimic-NC or inh-NC group (independent-sample t-test). (C) The potential binding site of miR-138-5p on the 3’UTR of PLLP mRNA. The mutant sequences are marked in red. (D) Dual-luciferase reporter assays of HEK293T cells cotransfected with miR-138-5p mimics, PLLP wild-type (PLLP-wt), or PLLP-mutant type (PLLP-mut) plasmids. Y-axis: Relative luciferase activity compared with the miR-NC + PLLP-Wt group. ***P < 0.001, vs. miR-NC group (one-way analysis of variance and Tukey’s post hoc test). (E) We tested PLLP expression via western blotting in the SCs transfected with miR-138-5p mimics or miR-138-5p inhibitor. All bar graphs represent the average of three independent replicates, and the error bars are the SD. inh: Inhibitor; mut: mutant type; NC: normal control; PLLP: plasmolipin; wt: wild-type.

miR-138-5p reverses the effect of circ_0002538 on SCs

We demonstrated that circ_0002538 could sponge miR-138-5p and that miR-138-5p could inhibit SC migration by targeting PLLP. Subsequently, we explored whether circ_0002538 could regulate PLLP through miR-138-5p. The SCs cotransfected with the miR-138-5p mimics and circ_0002538 exhibited decreased migration compared with the SCs transfected with circ_0002538 only (Figure 9A and B), which indicated that ectopic expression of miR-138-5p could partially eliminate the promoting effect of circ_0002538. Western blot analysis showed that the SCs cotransfected with the miR-138-5p mimic and circ_0002538 exhibited reduced PLLP expression compared with the SCs transfected with circ_0002538 only (Figure 9C and D). The above results demonstrated that circ_0002538 regulated SC migration in part by sponging miR-138-5p and subsequently influencing PLLP expression.

Figure 9.

Figure 9

miR-138-5p reverses the circ_0002538-mediated promotion of SCs.

(A) Transwell analysis revealed that circ_0002538 promoted SC migration, but its effect was partially neutralized by the overexpression of miR-138-5p. Scale bars: 100 μm. (B) Quantification of the number of migrating cells in (A). All bar graphs represent the average of three independent replicates, and error bars are the SD. ***P < 0.001, vs. mimic-NC + vector group; ##P < 0.01, ###P < 0.001, vs. miR-138-5p + vector group; &&&P < 0.001, vs. mimic-NC + circ_0002538 group (one-way analysis of variance and Tukey’s post hoc test). (C) Western blot analyses showed that the overexpression of circ_0002538 increased PLLP protein expression, while the ectopic expression of miR-138-5p could partially eliminate this effect. (D) Quantification of PLLP by the densitometry of protein bands. *P < 0.05, vs. mimic-NC + vector group; #P < 0.05, ##P < 0.01, vs. miR-138-5p + vector group; &P < 0.05, vs. mimic-NC + circ_0002538 group (one-way analysis of variance and Tukey’s post hoc test). PLLP: Plasmolipin; NC: normal control.

Discussion

DPN is the most common complication of diabetes, and thus represents a major burden to healthcare systems and society worldwide (Selvarajah et al., 2019). Few studies have been used circRNA sequencing to study the etiology of human DPN. Although nontraumatic amputations are mainly caused by DPN, the actual number of calf amputations each year is not high, limiting the availability of sural nerve samples from individuals with DPN. We collected peripheral nerve tissues from individuals with or without DPN and performed circRNA sequencing and protein profiling. We verified the results of circRNA sequencing and further showed that circ_0002538 could ameliorate symptoms in diabetic mice with DPN by promoting the migration and myelination of SCs. Therefore, our data indicate that the overexpression of circ_0002538 may be a promising treatment for patients with DPN.

Transcriptomic alterations often occur during the pathogenesis and progression of diseases. Previous studies have identified hundreds of differentially expressed genes in patients with static or progressive diabetic neuropathy that are functionally enriched in pathways, including the regulation of axonogenesis and lipid metabolism (Hur et al., 2011). A microarray analysis of the dorsal root ganglia of diabetic rats found that DE mRNAs with downregulated expression were significantly enriched in various biological processes, including myelination, peripheral nervous system myelination, axon guidance, and the regulation of axon production (Guo et al., 2018). Further, aberrantly expressed mRNAs in SCs isolated from the sciatic nerves of diabetic rats were enriched in downregulated biological processes related to myelination, axonogenesis, and axon development (Wang et al., 2020b). In this study, we identified 265 proteins with dysregulated expression in peripheral nerves from DPN patients that were enriched in myelination. SCs provide protection and nutritional support to enable myelinated axons to maintain normal physiological functions, and impaired SC function eventually leads to axonal loss (Dey et al., 2013). Therefore, we focused on the influence of SCs on DPN. We evaluated the function of SCs from patients with diabetes and found that these SCs had reduced migration, consistent with the results of previous studies (Gumy et al., 2008; Jia et al., 2018).

Although circRNAs were originally thought to be byproducts of abnormal splicing events (Cocquerelle et al., 1993), recent studies have shown that certain circRNAs are involved in some important physiological processes. However, the role of circRNAs in the SCs of DPN has rarely been examined, especially in human DPN. Zhang et al. (2020) reported 15 DEcircRNAs in the dorsal root ganglia between wild-type mice and mice with diabetes mellitus. Liu et al. (2019) reported that mmu_circRNA_006636 could relieve high glucose-induced apoptosis and autophagy in RSC96 cells. In our study, 116 circRNAs had downregulated expression and 53 circRNAs had upregulated expression in DPN. Among them, 11 circRNAs were verified, of which circ_0000711 and circ_0006156 were previously reported to play important roles in tumors (Li et al., 2018; Hong et al., 2019; Chen et al., 2020; He et al., 2020), but none were found to be involved in neuropathy. The functions of most verified DEcircRNAs are still unclear. Therefore, more research is needed to explore the potential roles of noncoding RNAs in human DPN.

One of the most common and important functions of circRNAs is to act as competing endogenous RNAs that sequester miRNAs through their binding sites and then modulate the activity of miRNAs on their target genes (Salmena et al., 2011). Although the function of circ_0002538 has not previously been characterized, we found decreased circ_0002538 expression in the nerves of patients with DPN. Further, we found that the overexpression of circ_0002538 improved the symptoms of DPN in diabetic mice. Transmission electron microscopy demonstrated that the administration of circ_0002538 decreased the number of damaged myelin sheaths in DPN, indicating that circ_0002538 might help repair damaged myelin sheaths by improving myelination. According to the GO biological process analysis, the proteins with dysregulated expression identified using protein profiling were significantly enriched in the myelination process, indicating that circ_0002538 improved DPN by regulating myelination-related proteins. The expression of myelination-related proteins was detected in the circ_0002538-overexpressing SCs, which demonstrated that circ_0002538 could regulate the expression of PLLP. Based on the computational predictions and experimental validation of candidate miRNAs binding circ_0002538 and PLLP, we selected miR-138-5p for the construction of competing endogenous RNAs. The circ_0002538-miR-138-5p-PLLP axis was demonstrated using RNA pulldown assays, dual luciferase assays, and a mouse model of DPN. We further verified that circ_0002538 could competitively adsorb miR-138-5p to antagonize its suppression of PLLP.

DPN is involved in deleterious changes in peripheral nerves, such as myelin damage (Cermenati et al., 2012). The myelin sheath is a multilayer membrane produced by SCs that allows efficient transmission of nerve impulses. PLLP has been found to assemble myelin membrane precursor domains via its ability to attract liquid-ordered lipids between the Golgi complex and plasma membrane (Yaffe et al., 2015), and PLLP expression was found to be elevated in nerve stumps following axotomy (Bosse et al., 2003). However, the characteristics and functions of PLLP have not been examined in DPN. In our research, we found that PLLP regulated the migration of SCs, which is an important step preceding myelination and remyelination of the peripheral nervous system (Anliker et al., 2013). Impaired or delayed SC migration contributes to abnormal myelination and demyelination of peripheral nerves (Anliker et al., 2013; Yi et al., 2019). These data are consistent with our finding that silencing PLLP can lead to impaired SC migration and peripheral nerve demyelination in mice. PLLP expression was decreased in diabetic mice with DPN. The increased expression of PLLP, mediated by the overexpression of circ_0002538, improved demyelination. Therefore, we concluded that circ_0002538 and PLLP might play important roles in DPN, and thus might be useful in the development of treatments for demyelinating diseases.

This study had several limitations. First, the number of nerve samples used for sequencing and verification was relatively small. Second, to minimize the influence of other cells, we only used nerve bundles for sequencing and subsequent verification. However, we still cannot completely exclude the influence of other components in peripheral nerves, such as axons, fibroblasts, endothelial cells, and inflammatory cells. Their effects on DPN are the subjects of further research. Third, as circRNAs can interact with different proteins or be translated in a way that mediates their biological roles, further research is needed to identify more circRNAs related to the pathogenesis of DPN. Finally, although we validated the protective effects of circ_0002538 in mice and found an improvement in the neuropathic phenotype and symptoms of DPN, the therapeutic effects on humans need to be verified.

In conclusion, this study reported the results of circRNA sequencing and protein profiling of peripheral nerves from individuals with DPN. As a result, we verified 11 DEcircRNAs in the DPN and control groups. Furthermore, our study demonstrated that circ_0002538 expression was downregulated in patients with DPN and that increased expression of circ_0002538 improved the symptoms of diabetic mice with DPN. Mechanistically, circ_0002538 regulated SC migration and myelination, at least in part, through the miR-138-5p/PLLP axis. Collectively, our study illuminated the key role of the circ_0002538/miR-138-5p/PLLP axis in DPN. Our results provide new insight into the mechanisms and potential treatments for DPN.

Additional files:

Additional Table 1: Primers used in this study.

Additional Table 2: Nucleic acid sequences used in this study.

Additional Table 3: Basic characteristics of patients included in the study.

Additional Table 4 (452KB, pdf) : The differentially expressed proteins analyzed in this study were selected from the results of protein profiling analysis with fold change (FC) > 1.3 and P < 0.05.

Additional Table 4

The differentially expressed proteins analyzed in this study were selected from the results of protein profiling analysis

NRR-18-1591_Suppl1.pdf (452KB, pdf)

Additional Table 5: GO cellular component analysis of differentially expressed proteins.

Additional Table 6 (486.4KB, pdf) : GO biological process analysis of differentially expressed proteins.

Additional Table 6

GO biological process analysis of differentially expressed proteins

NRR-18-1591_Suppl2.pdf (486.4KB, pdf)

Additional Table 7 (555.4KB, pdf) : GO molecular function analysis of differentially expressed proteins.

Additional Table 7

GO molecular function analysis of differentially expressed proteins

NRR-18-1591_Suppl3.pdf (555.4KB, pdf)

Additional Table 8: KEGG pathway analysis of differentially expressed proteins.

Additional Table 9: The DEcircRNAs analyzed in this study were selected from the results of circRNA sequencing analysis with FC > 2.0, P<0.01, q < 0.05 and readings ≥ 50.

Additional Table 10 (2MB, pdf) : The differentially expressed mRNAs analyzed in this study were selected from the results of mRNA sequencing analysis.

Additional Table 10

The differentially expressed mRNAs analyzed in this study were selected from the results of mRNA sequencing analysis

Additional Table 11 (441.8KB, pdf) : GO biological process analysis of filtered mRNAs.

Additional Table 11

GO biological process analysis of filtered mRNAs

NRR-18-1591_Suppl5.pdf (441.8KB, pdf)

Additional Table 12: GO cellular component analysis of filtered mRNAs.

Additional Table 12.

GO cellular component analysis of filtered mRNAs

ONTOLOGY GOID Description GeneRatio BgRatio pvalue p.adjust geneID Count
CC GO:0005578 proteinaceous extracellular matrix 28/683 365/18399 0.00024621 0.07164718 COL14A1/COL17A1/HAPLN3/COL19A1/SERPINF1/TECTA/MMP3/MMP8/FLRT1/WISP1/ENAM/FRAS1/WNT16/FREM3/ELN/CHI3L1/COL5A3/COL4A3/ADAMTS14/ADAMTS19/MMP10/VWF/LRRN3/TNFRSF11B/KAZALD1/MFAP4/MATN3/ITGA6 28
CC GO:0034702 ion channel complex 23/683 288/18399 0.00049174 0.07164718 CHRNE/CHRNA10/TRPC4/KCND1/KCNG2/KCNE3/KCNQ5/LRRC8E/ANO1/GRID2/GRIK5/ABCC9/GABRA2/GABRA5/SCN1A/SCN3B/SCN3A/GRIN2C/GRIN2D/GRIN3A/CLIC6/CLIC2/CATSPER1 23
CC GO:1902495 transmembrane transportercomplex 25/683 325/18399 0.0004987 0.07164718 CHRNE/CHRNA10/TRPC4/KCND1/KCNG2/KCNE3/KCNQ5/LRRC8E/ANO1/GRID2/GRIK5/ABCB6/ABCC9/GABRA2/GABRA5/SCN1A/SCN3B/SCN3A/GRIN2C/GRIN2D/GRIN3A/UQCC3/CLIC6/CLIC2/CATSPER1 25
CC GO:1990351 transporter complex 25/683 332/18399 0.00068024 0.07329627 CHRNE/CHRNA10/TRPC4/KCND1/KCNG2/KCNE3/KCNQ5/LRRC8E/ANO1/GRID2/GRIK5/ABCB6/ABCC9/GABRA2/GABRA5/SCN1A/SCN3B/SCN3A/GRIN2C/GRIN2D/GRIN3A/UQCC3/CLIC6/CLIC2/CATSPER1 25
CC GO:0101003 ficolin-1-rich granule membrane 8/683 60/18399 0.00160995 0.13877781 SLC11A1/SERPINB12/NCKAP1L/ENPP4/ATP6V0C/CD93/PKP1/NFASC 8
CC GO:0098802 plasma membrane receptorcomplex 15/683 177/18399 0.00253432 0.18204886 CHRNE/CHRNA10/RAMP1/CARD11/GRID2/GRIK5/ACVR1C/IL6/TLR1/GRIN2C/GRIN2D/GRIN3A/ITGB4/ITGB8/ITGA6 15
CC GO:0005788 endoplasmic reticulum lumen 21/683 298/18399 0.00388676 0.23931312 COL14A1/C3/COL17A1/COL19A1/EBI3/EDN1/CYP2W1/ENAM/COL25A1/APOE/MGAT4A/BCHE/IL6/COL5A3/COL4A3/GHRL/CES1/MELTF/IGFBP5/MATN3/IL12A 21
CC GO:0017146 NMDA selective glutamatereceptor complex 3/683 11/18399 0.00672195 0.32590943 GRIN2C/GRIN2D/GRIN3A 3
CC GO:0034706 sodium channel complex 4/683 21/18399 0.00680553 0.32590943 GRIK5/SCN1A/SCN3B/SCN3A 4
CC GO:0043235 receptor complex 21/683 325/18399 0.0101341 0.43677987 CHRNE/ADRB2/CHRNA10/RAMP1/CARD11/GRID2/GRIK5/FLT4/ACVR1C/IL6/GABRA2/GABRA5/NR1H3/PLXNA4/TLR1/GRIN2C/GRIN2D/GRIN3A/ITGB4/ITGB8/ITGA6 21
CC GO:0001518 voltage-gated sodium channelcomplex 3/683 14/18399 0.0136496 0.47861007 SCN1A/SCN3B/SCN3A 3
CC GO:0044420 extracellular matrix component 10/683 120/18399 0.01391592 0.47861007 COL14A1/COL17A1/SERPINF1/FRAS1/FREM3/ELN/COL5A3/COL4A3/MFAP4/ITGA6 10
CC GO:0097060 synaptic membrane 19/683 295/18399 0.01443603 0.47861007 CHRNE/CHRNA10/SNCAIP/TMEM108/BAALC/ANK1/GRID2/GRIK5/GABRA2/GABRA5/SYP/CNKSR2/NDUFS7/GRIN2C/GRIN2D/GRIN3A/DLGAP2/EPHA7/RIMS1 19
CC GO:0030285 integral component of synapticvesicle membrane 3/683 15/18399 0.01659897 0.50912388 TMEM163/GABRA2/SYP 3
CC GO:0033267 axon part 13/683 181/18399 0.01771893 0.50912388 SERPINF1/L1CAM/TMEM108/MGARP/NRG1/ANK1/GRIK5/SLC1A2/SCN1A/SYP/UCN/HAP1/NFASC 13
CC GO:0030673 axolemma 3/683 16/18399 0.01987621 0.53431783 NRG1/ANK1/SLC1A2 3
CC GO:0045211 postsynaptic membrane 15/683 225/18399 0.02107518 0.53431783 CHRNE/CHRNA10/TMEM108/BAALC/ANK1/GRID2/GRIK5/GABRA2/GABRA5/CNKSR2/GRIN2C/GRIN2D/GRIN3A/DLGAP2/EPHA7 15
CC GO:0030175 filopodium 8/683 96/18399 0.02629834 0.58544602 TRPV4/ACPP/PPP1R9A/CXADR/LCP1/ACTA2/CD302/ITGA6 8
CC GO:0034703 cation channel complex 14/683 212/18399 0.02711827 0.58544602 TRPC4/KCND1/KCNG2/KCNE3/KCNQ5/GRIK5/ABCC9/SCN1A/SCN3B/SCN3A/GRIN2C/GRIN2D/GRIN3A/CATSPER1 14
CC GO:0008328 ionotropic glutamate receptorcomplex 5/683 46/18399 0.02716687 0.58544602 GRID2/GRIK5/GRIN2C/GRIN2D/GRIN3A 5
CC GO:0044304 main axon 6/683 63/18399 0.0290586 0.59639312 NRG1/ANK1/SLC1A2/SCN1A/UCN/NFASC 6
CC GO:0098878 neurotransmitter receptorcomplex 5/683 48/18399 0.03196607 0.62624432 GRID2/GRIK5/GRIN2C/GRIN2D/GRIN3A 5
CC GO:0034707 chloride channel complex 5/683 49/18399 0.03455175 0.64746977 ANO1/GABRA2/GABRA5/CLIC6/CLIC2 5
CC GO:0070820 tertiary granule 11/683 163/18399 0.0408761 0.67918917 SLC11A1/MMP8/SERPINB12/NCKAP1L/ENPP4/CXCL1/ATP6V0C/METTL7A/CD93/PKP1/NFASC 11
CC GO:0032809 neuronal cell body membrane 3/683 21/18399 0.04118619 0.67918917 FLRT1/KCNE3/GABRA5 3
CC GO:0044298 cell body membrane 3/683 21/18399 0.04118619 0.67918917 FLRT1/KCNE3/GABRA5 3
CC GO:0005581 collagen trimer 7/683 88/18399 0.04507474 0.67918917 COL14A1/COL17A1/COL19A1/COL25A1/COL5A3/COL4A3/C1QL3 7
CC GO:0016528 sarcoplasm 6/683 70/18399 0.0452783 0.67918917 ANK1/JPH2/FABP3/CLEC18B/GSTM2/MRVI1 6
CC GO:0098563 intrinsic component of synapticvesicle membrane 3/683 22/18399 0.04641385 0.67918917 TMEM163/GABRA2/SYP 3
CC GO:0070382 exocytic vesicle 11/683 167/18399 0.04727535 0.67918917 TRIM9/SNCAIP/TMEM163/SLC18A2/SLC40A1/SYN2/STX11/GABRA2/SYP/SYTL3/HAP1 11

Additional Table 13: GO molecular function analysis of filtered mRNAs.

Additional Table 14: Candidate miRNAs binding to circ_0002538 predicted by RNAhybrid, miRanda and TargetScan.

Additional Table 15: The candidate miRNAs binding to PLLP predicted by miRDB, miRTarBase, miRWalk and TargetScan.

Additional Figure 1 (1.7MB, tif) : Confirmation of DPN in the collected peripheral nerve tissues.

Additional Figure 1

Confirmation of DPN in the collected peripheral nerve tissues.

(A, B) HE staining showed that the number of subcutaneous nerves (arrows) in the skin 10 cm above the lateral malleolus of patients with diabetes was decreased compared with that of patients without diabetes. The arrows point to subcutaneous nerves. Scale bars: 200 µm; 100 µm (high-magnification images). (C, D) The IF micrographs showed IENFD (arrows) in the skin of patients with diabetes was decreased than that of patients without diabetes. The images on the right are the high-magnification images in the square of the images on the left. The arrows pointed to PGP9.5 positive nerve fibers. Scale bars: 50 µm; 25 µm (high-magnification images). (E, F) TEM showed that the number of axons and intact myelin sheaths were decreased in the sural nerves of patients with diabetes. Arrows indicate abnormal myelin sheaths. Scale bars: 10 µm (left); 1 µm (right). Data are expressed as mean ± SD (n = 10). **P < 0.01, **P < 0.001, vs. no-diabetes (independent-sample t-test). HE: Hematoxylin and eosin; IENFD: intraepidermal nerve fiber density; IF: immunofluorescence staining; PGP9.5: protein gene product 9.5; TEM: transmission electron microscopy.

NRR-18-1591_Suppl1.tif (1.7MB, tif)

Additional Figure 2 (1.1MB, tif) : Identification of SCs isolated from sural nerves of patients.

Additional Figure 2

Identification of SCs isolated from sural nerves of patients.

(A) The isolated SCs exhibited a long spindle shape under an optical microscope. Scale bar: 200 µm. (B) The positive SC markers, S100B (Fluor® 488) and GFAP (Fluor® 488), indicated that the isolated cells were SCs. Scale bars: 50 µm. DAPI: 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride; GFAP: glial fibrillary acidic protein; IF: immunofluorescence; S100B: S100 calcium binding protein B.

NRR-18-1591_Suppl2.tif (1.1MB, tif)

Additional Figure 3 (777KB, tif) : Overexpression of circ_0002538 promoted SC migration.

Additional Figure 3

Overexpression of circ_0002538 promotes SC migration.

(A) As assessed by RT-PCR, circ_0002538 was increased in circ_0002538-overexpressing SCs, while KLHL8 mRNA did not change significantly. Y-axis: fold changes of RNA expressions compared with the vector group. (B, C) Migration assays showed that overexpression of circ_0002538 increased the number of SCs that migrated to the lower chamber. Scale bars: 100 µm. All bar graphs represent the average of three independent replicates, and the error bars are the SD. **P < 0.01, ***P < 0.001, vs. vector group (independent-sample t-test). KLHL8: Kelch-like family member 8; RT-PCR: Real-time polymerase chain reaction; SCs: Schwann cells.

NRR-18-1591_Suppl3.tif (777KB, tif)

Additional Figure 4 (2.9MB, tif) : The filtered mRNAs in the mRNA sequencing results of the PLLP-overexpressing SCs and the control SCs were further analyzed with GO enrichment analysis.

Additional Figure 4

The filtered mRNAs in the mRNA-sequencing results of the PLLP-overexpressing SCs and the control SCs were further analyzed with GO enrichment analysis.

(A) GO biological process analysis. The red dotted box highlighted the interesting biological process. (B) GO cellular component analysis. (C) GO molecular function analysis. GO: Gene Ontology; PLLP: plasmolipin; SCs: Schwann cells.

NRR-18-1591_Suppl4.tif (2.9MB, tif)

Footnotes

Funding: This work was supported by the National Natural Science Foundation of China, Nos. 81772094 (to ZBC), 81974289 (to ZBC); the Key Research and Development Program of Hubei Province, No. 2020BCB031 (to ZBC); and Natural Science Foundation of Hubei Province, No. 2020CFB433 (to YTL).

Conflicts of interest: The authors declare no competing interests.

Availability of data and materials: All data generated or analyzed during this study are included in this published article and its supplementary information files.

C-Editor: Zhao M; S-Editors: Yu J, Li CH; L-Editors: Yu J, Song LP; T-Editor: Jia Y

References

  • 1.Anliker B, Choi JW, Lin ME, Gardell SE, Rivera RR, Kennedy G, Chun J. Lysophosphatidic acid (LPA) and its receptor, LPA1 , influence embryonic schwann cell migration, myelination and cell-to-axon segregation. Glia. 2013;61:2009–2022. doi: 10.1002/glia.22572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Baum P, Kosacka J, Estrela-Lopis I, Woidt K, Serke H, Paeschke S, Stockinger M, Klöting N, Blüher M, Dorn M, Classen J, Thiery J, Bechmann I, Toyka KV, Nowicki M. The role of nerve inflammation and exogenous iron load in experimental peripheral diabetic neuropathy (PDN) Metabolism. 2016;65:391–405. doi: 10.1016/j.metabol.2015.11.002. [DOI] [PubMed] [Google Scholar]
  • 3.Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev. 2011;35:565–572. doi: 10.1016/j.neubiorev.2010.07.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Bosse F, Hasse B, Pippirs U, Greiner-Petter R, Müller HW. Proteolipid plasmolipin:localization in polarized cells, regulated expression and lipid raft association in CNS and PNS myelin. J Neurochem. 2003;86:508–518. doi: 10.1046/j.1471-4159.2003.01870.x. [DOI] [PubMed] [Google Scholar]
  • 5.Cermenati G, Abbiati F, Cermenati S, Brioschi E, Volonterio A, Cavaletti G, Saez E, De Fabiani E, Crestani M, Garcia-Segura LM, Melcangi RC, Caruso D, Mitro N. Diabetes-induced myelin abnormalities are associated with an altered lipid pattern:protective effects of LXR activation. J Lipid Res. 2012;53:300–310. doi: 10.1194/jlr.M021188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63. doi: 10.1016/0165-0270(94)90144-9. [DOI] [PubMed] [Google Scholar]
  • 7.Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4:303–306. doi: 10.4103/0976-500X.119726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Chen KH, Pan JF, Chen ZX, Pan D, Gao T, Huang M, Huang JN. Effects of hsa_circ_0000711 expression level on proliferation and apoptosis of hepatoma cells. Eur Rev Med Pharmacol Sci. 2020;24:4161–4171. doi: 10.26355/eurrev_202004_20996. [DOI] [PubMed] [Google Scholar]
  • 9.Chen Y, Wang X. miRDB:an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48:D127–131. doi: 10.1093/nar/gkz757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993;7:155–160. doi: 10.1096/fasebj.7.1.7678559. [DOI] [PubMed] [Google Scholar]
  • 11.Dey I, Midha N, Singh G, Forsyth A, Walsh SK, Singh B, Kumar R, Toth C, Midha R. Diabetic Schwann cells suffer from nerve growth factor and neurotrophin-3 underproduction and poor associability with axons. Glia. 2013;61:1990–1999. doi: 10.1002/glia.22570. [DOI] [PubMed] [Google Scholar]
  • 12.Dweep H, Sticht C, Pandey P, Gretz N. miRWalk--database:prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44:839–847. doi: 10.1016/j.jbi.2011.05.002. [DOI] [PubMed] [Google Scholar]
  • 13.Fan B, Li C, Szalad A, Wang L, Pan W, Zhang R, Chopp M, Zhang ZG, Liu XS. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetologia. 2020;63:431–443. doi: 10.1007/s00125-019-05043-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Farmer KL, Li C, Dobrowsky RT. Diabetic peripheral neuropathy:should a chaperone accompany our therapeutic approach? Pharmacol Rev. 2012;64:880–900. doi: 10.1124/pr.111.005314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V. Diabetic neuropathy. Nat Rev Dis Primers. 2019a;5:41. doi: 10.1038/s41572-019-0092-1. [DOI] [PubMed] [Google Scholar]
  • 16.Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V. Diabetic neuropathy. Nat Rev Dis Primers. 2019b;5:42. doi: 10.1038/s41572-019-0097-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Gillen C, Gleichmann M, Greiner-Petter R, Zoidl G, Kupfer S, Bosse F, Auer J, Müller HW. Full-lenth cloning, expression and cellular localization of rat plasmolipin mRNA, a proteolipid of PNS and CNS. Eur J Neurosci. 1996;8:405–414. doi: 10.1111/j.1460-9568.1996.tb01223.x. [DOI] [PubMed] [Google Scholar]
  • 18.Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR, Agrawal YO. Challenges and issues with streptozotocin-induced diabetes - A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact. 2016;244:49–63. doi: 10.1016/j.cbi.2015.11.032. [DOI] [PubMed] [Google Scholar]
  • 19.Gumy LF, Bampton ET, Tolkovsky AM. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol Cell Neurosci. 2008;37:298–311. doi: 10.1016/j.mcn.2007.10.004. [DOI] [PubMed] [Google Scholar]
  • 20.Guo G, Liu Y, Ren S, Kang Y, Duscher D, Machens HG, Chen Z. Comprehensive analysis of differentially expressed microRNAs and mRNAs in dorsal root ganglia from streptozotocin-induced diabetic rats. PLoS One. 2018;13:e0202696. doi: 10.1371/journal.pone.0202696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.He J, Wang HB, Huang JJ, Zhang L, Li DL, He WY, Xiong QM, Qin ZS. Diabetic neuropathic pain induced by streptozotocin alters the expression profile of non-coding RNAs in the spinal cord of mice as determined by sequencing analysis. Exp Ther Med. 2021;22:775. doi: 10.3892/etm.2021.10207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.He YX, Ju H, Li N, Jiang YF, Zhao WJ, Song TT, Ren WH. Association between hsa_circ_0006156 expression and incidence of gastric cancer. Eur Rev Med Pharmacol Sci. 2020;24:3030–3036. doi: 10.26355/eurrev_202003_20667. [DOI] [PubMed] [Google Scholar]
  • 23.Holland NR, Stocks A, Hauer P, Cornblath DR, Griffin JW, McArthur JC. Intraepidermal nerve fiber density in patients with painful sensory neuropathy. Neurology. 1997;48:708–711. doi: 10.1212/wnl.48.3.708. [DOI] [PubMed] [Google Scholar]
  • 24.Hong Y, Qin H, Li Y, Zhang Y, Zhuang X, Liu L, Lu K, Li L, Deng X, Liu F, Shi S, Liu G. FNDC3B circular RNA promotes the migration and invasion of gastric cancer cells via the regulation of E-cadherin and CD44 expression. J Cell Physiol. 2019;234:19895–19910. doi: 10.1002/jcp.28588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, Tang Y, Chen YG, Jin CN, Yu Y, Xu JT, Li YM, Cai XX, Zhou ZY, Chen XH, Pei YY, Hu L, Su JJ, Cui SD, Wang F, et al. miRTarBase 2020:updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020;48:D148–154. doi: 10.1093/nar/gkz896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Hulsen T, de Vlieg J, Alkema W. BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics. 2008;9:488. doi: 10.1186/1471-2164-9-488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Hur J, Sullivan KA, Pande M, Hong Y, Sima AA, Jagadish HV, Kretzler M, Feldman EL. The identification of gene expression profiles associated with progression of human diabetic neuropathy. Brain. 2011;134:3222–3235. doi: 10.1093/brain/awr228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Ii M, Nishimura H, Kusano KF, Qin G, Yoon YS, Wecker A, Asahara T, Losordo DW. Neuronal nitric oxide synthase mediates statin-induced restoration of vasa nervorum and reversal of diabetic neuropathy. Circulation. 2005;112:93–102. doi: 10.1161/CIRCULATIONAHA.104.511964. [DOI] [PubMed] [Google Scholar]
  • 29.Jia L, Chopp M, Wang L, Lu X, Szalad A, Zhang ZG. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy. FASEB J. 2018;32:fj201800597R. doi: 10.1096/fj.201800597R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Li J, Ni S, Zhou C, Ye M. The expression profile and clinical application potential of hsa_circ_0000711 in colorectal cancer. Cancer Manag Res. 2018;10:2777–2784. doi: 10.2147/CMAR.S172388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Liu Y, Chen X, Yao J, Kang J. Circular RNA ACR relieves high glucose-aroused RSC96 cell apoptosis and autophagy via declining microRNA-145-3p. J Cell Biochem. 2019 doi: 10.1002/jcb.29568. doi:10.1002/jcb.29568. [DOI] [PubMed] [Google Scholar]
  • 32.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. [DOI] [PubMed] [Google Scholar]
  • 33.Lu S, Zhu N, Guo W, Wang X, Li K, Yan J, Jiang C, Han S, Xiang H, Wu X, Liu Y, Xiong H, Chen L, Gong Z, Luo F, Hou W. RNA-Seq revealed a circular RNA-microRNA-mRNA regulatory network in hantaan virus infection. Front Cell Infect Microbiol. 2020;10:97. doi: 10.3389/fcimb.2020.00097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Masocha W, Kombian SB, Edafiogho IO. Evaluation of the antinociceptive activities of enaminone compounds on the formalin and hot plate tests in mice. Sci Rep. 2016;6:21582. doi: 10.1038/srep21582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley GM, Bartel DP. The biochemical basis of microRNA targeting efficacy. Science. 2019;366:eaav1741. doi: 10.1126/science.aav1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Pan Z, Li GF, Sun ML, Xie L, Liu D, Zhang Q, Yang XX, Xia S, Liu X, Zhou H, Xue ZY, Zhang M, Hao LY, Zhu LJ, Cao JL. MicroRNA-1224 splicing circularRNA-Filip1l in an Ago2-dependent manner regulates chronic inflammatory pain via targeting Ubr5. J Neurosci. 2019;39:2125–2143. doi: 10.1523/JNEUROSCI.1631-18.2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Perlman RL. Mouse models of human disease:An evolutionary perspective. Evol Med Public Health. 2016;2016:170–176. doi: 10.1093/emph/eow014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, Sosenko JM, Ziegler D. Diabetic neuropathy:a position statement by the American Diabetes Association. Diabetes Care. 2017;40:136–154. doi: 10.2337/dc16-2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–1517. doi: 10.1261/rna.5248604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis:the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–358. doi: 10.1016/j.cell.2011.07.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Salzer JL. Schwann cell myelination. Cold Spring Harb Perspect Biol. 2015;7:a020529. doi: 10.1101/cshperspect.a020529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Selvarajah D, Kar D, Khunti K, Davies MJ, Scott AR, Walker J, Tesfaye S. Diabetic peripheral neuropathy:advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol. 2019;7:938–948. doi: 10.1016/S2213-8587(19)30081-6. [DOI] [PubMed] [Google Scholar]
  • 43.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Shi L, Sun BL, Zhang SY, Zhang YQ. Biological function of circular RNA and its role in tissue repair. Zhongguo Zuzhi Gongcheng Yanjiu. 2020;24:2770–2774. [Google Scholar]
  • 45.Singh R, Kishore L, Kaur N. Diabetic peripheral neuropathy:current perspective and future directions. Pharmacol Res. 2014;80:21–35. doi: 10.1016/j.phrs.2013.12.005. [DOI] [PubMed] [Google Scholar]
  • 46.Tannemaat MR, Eggers R, Hendriks WT, de Ruiter GC, van Heerikhuize JJ, Pool CW, Malessy MJ, Boer GJ, Verhaagen J. Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci. 2008;28:1467–1479. doi: 10.1111/j.1460-9568.2008.06452.x. [DOI] [PubMed] [Google Scholar]
  • 47.Vlcková-Moravcová E, Bednarík J, Dusek L, Toyka KV, Sommer C. Diagnostic validity of epidermal nerve fiber densities in painful sensory neuropathies. Muscle Nerve. 2008;37:50–60. doi: 10.1002/mus.20889. [DOI] [PubMed] [Google Scholar]
  • 48.Wang A, Toma MA, Ma J, Li D, Vij M, Chu T, Wang J, Li X, Xu Landén N. Circular RNA hsa_circ_0084443 is upregulated in diabetic foot ulcer and modulates keratinocyte migration and proliferation. Adv Wound Care (New Rochelle) 2020a;9:145–160. doi: 10.1089/wound.2019.0956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Wang C, Xu X, Chen J, Kang Y, Guo J, Duscher D, Yang X, Guo G, Ren S, Xiong H, Yuan M, Jiang T, Machens HG, Chen Z, Chen Y. The construction and analysis of lncRNA-miRNA-mRNA competing endogenous RNA network of Schwann cells in diabetic peripheral neuropathy. Front Bioeng Biotechnol. 2020b;8:490. doi: 10.3389/fbioe.2020.00490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Xu ZZ, Kim YH, Bang S, Zhang Y, Berta T, Wang F, Oh SB, Ji RR. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat Med. 2015;21:1326–1331. doi: 10.1038/nm.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Yaffe Y, Hugger I, Yassaf IN, Shepshelovitch J, Sklan EH, Elkabetz Y, Yeheskel A, Pasmanik-Chor M, Benzing C, Macmillan A, Gaus K, Eshed-Eisenbach Y, Peles E, Hirschberg K. The myelin proteolipid plasmolipin forms oligomers and induces liquid-ordered membranes in the Golgi complex. J Cell Sci. 2015;128:2293–2302. doi: 10.1242/jcs.166249. [DOI] [PubMed] [Google Scholar]
  • 52.Yi S, Liu Q, Wang X, Qian T, Wang H, Zha G, Yu J, Wang P, Gu X, Chu D, Li S. Tau modulates Schwann cell proliferation, migration and differentiation following peripheral nerve injury. J Cell Sci. 2019;132:jcs222059. doi: 10.1242/jcs.222059. [DOI] [PubMed] [Google Scholar]
  • 53.Zhang HH, Zhang Y, Wang X, Yang P, Zhang BY, Hu S, Xu GY, Hu J. Circular RNA profile in diabetic peripheral neuropathy:analysis of coexpression networks of circular RNAs and mRNAs. Epigenomics. 2020;12:843–857. doi: 10.2217/epi-2020-0011. [DOI] [PubMed] [Google Scholar]
  • 54.Zhang SB, Lin SY, Liu M, Liu CC, Ding HH, Sun Y, Ma C, Guo RX, Lv YY, Wu SL, Xu T, Xin WJ. CircAnks1a in the spinal cord regulates hypersensitivity in a rodent model of neuropathic pain. Nat Commun. 2019;10:4119. doi: 10.1038/s41467-019-12049-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Additional Table 4

The differentially expressed proteins analyzed in this study were selected from the results of protein profiling analysis

NRR-18-1591_Suppl1.pdf (452KB, pdf)
Additional Table 6

GO biological process analysis of differentially expressed proteins

NRR-18-1591_Suppl2.pdf (486.4KB, pdf)
Additional Table 7

GO molecular function analysis of differentially expressed proteins

NRR-18-1591_Suppl3.pdf (555.4KB, pdf)
Additional Table 10

The differentially expressed mRNAs analyzed in this study were selected from the results of mRNA sequencing analysis

Additional Table 11

GO biological process analysis of filtered mRNAs

NRR-18-1591_Suppl5.pdf (441.8KB, pdf)
Additional Figure 1

Confirmation of DPN in the collected peripheral nerve tissues.

(A, B) HE staining showed that the number of subcutaneous nerves (arrows) in the skin 10 cm above the lateral malleolus of patients with diabetes was decreased compared with that of patients without diabetes. The arrows point to subcutaneous nerves. Scale bars: 200 µm; 100 µm (high-magnification images). (C, D) The IF micrographs showed IENFD (arrows) in the skin of patients with diabetes was decreased than that of patients without diabetes. The images on the right are the high-magnification images in the square of the images on the left. The arrows pointed to PGP9.5 positive nerve fibers. Scale bars: 50 µm; 25 µm (high-magnification images). (E, F) TEM showed that the number of axons and intact myelin sheaths were decreased in the sural nerves of patients with diabetes. Arrows indicate abnormal myelin sheaths. Scale bars: 10 µm (left); 1 µm (right). Data are expressed as mean ± SD (n = 10). **P < 0.01, **P < 0.001, vs. no-diabetes (independent-sample t-test). HE: Hematoxylin and eosin; IENFD: intraepidermal nerve fiber density; IF: immunofluorescence staining; PGP9.5: protein gene product 9.5; TEM: transmission electron microscopy.

NRR-18-1591_Suppl1.tif (1.7MB, tif)
Additional Figure 2

Identification of SCs isolated from sural nerves of patients.

(A) The isolated SCs exhibited a long spindle shape under an optical microscope. Scale bar: 200 µm. (B) The positive SC markers, S100B (Fluor® 488) and GFAP (Fluor® 488), indicated that the isolated cells were SCs. Scale bars: 50 µm. DAPI: 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride; GFAP: glial fibrillary acidic protein; IF: immunofluorescence; S100B: S100 calcium binding protein B.

NRR-18-1591_Suppl2.tif (1.1MB, tif)
Additional Figure 3

Overexpression of circ_0002538 promotes SC migration.

(A) As assessed by RT-PCR, circ_0002538 was increased in circ_0002538-overexpressing SCs, while KLHL8 mRNA did not change significantly. Y-axis: fold changes of RNA expressions compared with the vector group. (B, C) Migration assays showed that overexpression of circ_0002538 increased the number of SCs that migrated to the lower chamber. Scale bars: 100 µm. All bar graphs represent the average of three independent replicates, and the error bars are the SD. **P < 0.01, ***P < 0.001, vs. vector group (independent-sample t-test). KLHL8: Kelch-like family member 8; RT-PCR: Real-time polymerase chain reaction; SCs: Schwann cells.

NRR-18-1591_Suppl3.tif (777KB, tif)
Additional Figure 4

The filtered mRNAs in the mRNA-sequencing results of the PLLP-overexpressing SCs and the control SCs were further analyzed with GO enrichment analysis.

(A) GO biological process analysis. The red dotted box highlighted the interesting biological process. (B) GO cellular component analysis. (C) GO molecular function analysis. GO: Gene Ontology; PLLP: plasmolipin; SCs: Schwann cells.

NRR-18-1591_Suppl4.tif (2.9MB, tif)

Articles from Neural Regeneration Research are provided here courtesy of Wolters Kluwer -- Medknow Publications

RESOURCES