Skip to main content
British Journal of Industrial Medicine logoLink to British Journal of Industrial Medicine
. 1980 May;37(2):169–174. doi: 10.1136/oem.37.2.169

Chemical and photoelectron spectrometry analysis of the adsorption of phospholipid model membranes and red blood cell membranes on to chrysotile fibres.

M C Jaurand, J H Thomassin, P Baillif, L Magne, J C Touray, J Bignon
PMCID: PMC1008685  PMID: 6893551

Abstract

A study of the interaction of phospholipid model membranes and red blood cell membranes with UICC A chrysotile fibres using chemical analysis and photoelectron spectrometry showed that the interaction agreed with an adsorption of the membranes on to the chrysotile fibres. The photoelectron spectrometry analysis allowed the statement that phospholipid model membranes are adsorbed as bilayer. Chemical analysis showed that for each milligram of chrysotile the amount of phospholipids adsorbed was about 155 microgram and the available surface for phospholipids was about 38 m/g. It was established that entire membranes were adsorbed. A mechanism for the haemolytic capacity of chrysotile is suggested.

Full text

PDF
169

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Desai R., Hext P., Richards R. The prevention of asbestos-induced hemolysis. Life Sci. 1975 Jun 15;16(12):1931–1938. doi: 10.1016/0024-3205(75)90303-3. [DOI] [PubMed] [Google Scholar]
  2. Desai R., Richards R. J. The adsorption of biological macromolecules by mineral dusts. Environ Res. 1978 Jul;16(1-3):449–464. doi: 10.1016/0013-9351(78)90178-0. [DOI] [PubMed] [Google Scholar]
  3. Harington J. S., Miller K., Macnab G. Hemolysis by asbestos. Environ Res. 1971 Apr;4(2):95–117. doi: 10.1016/0013-9351(71)90038-7. [DOI] [PubMed] [Google Scholar]
  4. Harwood J. L., Desai R., Hext P., Tetley T., Richards R. Characterization of pulmonary surfactant from ox, rabbit, rat and sheep. Biochem J. 1975 Dec;151(3):707–714. doi: 10.1042/bj1510707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jaurand M. C., Magne L., Bignon J. Inhibition by phospholipids of haemolytic action of asbestos. Br J Ind Med. 1979 May;36(2):113–116. doi: 10.1136/oem.36.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jaurand M. C., Thomassin J. H., Magne L., Baillif P. Etude de l'adsorption des phospholipides par les fibres de chrysotile : confrontation des données de l'analyse chimique et de la spectrométrie de photoélectrons (méthode XPS). C R Seances Acad Sci D. 1979 Jan 15;288(2):279–282. [PubMed] [Google Scholar]
  7. Jones B. M., Edwards J. H., Wagner J. C. Absorption of serum proteins by inorganic dusts. Br J Ind Med. 1972 Jul;29(3):287–292. doi: 10.1136/oem.29.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lecuyer H., Dervichian D. G. Structure of aqueous mixtures of lecithin and cholesterol. J Mol Biol. 1969 Oct 14;45(1):39–57. doi: 10.1016/0022-2836(69)90208-3. [DOI] [PubMed] [Google Scholar]
  10. Light W. G., Wei E. T. Surface charge and asbestos toxicity. Nature. 1977 Feb 10;265(5594):537–539. doi: 10.1038/265537a0. [DOI] [PubMed] [Google Scholar]
  11. Light W. G., Wei E. T. Surface charge and hemolytic activity of asbestos. Environ Res. 1977 Feb;13(1):135–145. doi: 10.1016/0013-9351(77)90012-3. [DOI] [PubMed] [Google Scholar]
  12. Millard M. M., Bartholomew J. C. Surface studies of mammalian cells grown in culture by X-ray photoelectron spectroscopy. Anal Chem. 1977 Aug;49(9):1290–1296. doi: 10.1021/ac50017a004. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Industrial Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES