Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1991 Mar;54(3):236–240. doi: 10.1136/jnnp.54.3.236

Prior poliomyelitis-reduced capillary supply and metabolic enzyme content in hypertrophic slow-twitch (type I) muscle fibres.

K Borg 1, J Henriksson 1
PMCID: PMC1014392  PMID: 2030351

Abstract

Capillary supply and oxidative and glycolytic enzyme activities were determined in muscle biopsies from the tibialis anterior muscle in six prior polio patients and a control group. The polio patients, who had paresis and atrophy, but were able to walk normally by making maximal use of all remaining anterior tibial motor units, showed type I (slow-twitch) muscle fibre predominance with a mean (SD) of 98 (2%) type I fibres versus 81 (8)% in the controls (p less than 0.01) and muscle fibre hypertrophy, the average type I fibre cross-sectional area being 108% (p less than 0.005) larger than in the controls. The number of capillaries per muscle fibre was not significantly different from that in the control group, but with the increased muscle fibre area in the polio patients, the capillary density was significantly lower. The number of capillaries in contact with type I fibres relative to fibre area was 40% lower in the patients than in the controls (p less than 0.005). The levels of citrate synthase and phosphofructokinase were significantly lower (38% and 33%, respectively, p less than 0.05) in the patients than in the controls, indicating decreased oxidative and glycolytic potentials in the muscle fibres of the polio patients. It is proposed that the abnormal high-frequency activation of all remaining motor units during each step cycle recorded in these patients constitutes a stimulus for type I muscle fibre predominance and hypertrophy but that the overall low muscle usage results in a decreased stimulation of capillary proliferation and mitochondrial enzyme synthesis. The low capillary density and decreased oxidative and glycolytic enzyme potentials might be important factors for the development of muscle weakness, fatigue and muscle pain, which are commonly occurring symptoms in patients with prior poliomyelitis.

Full text

PDF
237

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alp P. R., Newsholme E. A., Zammit V. A. Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J. 1976 Mar 15;154(3):689–700. doi: 10.1042/bj1540689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen P. Capillary density in skeletal muscle of man. Acta Physiol Scand. 1975 Oct;95(2):203–205. doi: 10.1111/j.1748-1716.1975.tb10043.x. [DOI] [PubMed] [Google Scholar]
  3. Andersen P., Henriksson J. Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J Physiol. 1977 Sep;270(3):677–690. doi: 10.1113/jphysiol.1977.sp011975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blomstrand E., Challiss R. A., Cooney G. J., Newsholme E. A. Maximal activities of hexokinase, 6-phosphofructokinase, oxoglutarate dehydrogenase, and carnitine palmitoyltransferase in rat and avian muscles. Biosci Rep. 1983 Dec;3(12):1149–1153. doi: 10.1007/BF01120208. [DOI] [PubMed] [Google Scholar]
  5. Borg K., Borg J., Dhoot G., Edström L., Grimby L., Thornell L. E. Motoneuron firing and isomyosin type of muscle fibres in prior polio. J Neurol Neurosurg Psychiatry. 1989 Oct;52(10):1141–1148. doi: 10.1136/jnnp.52.10.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borg K., Borg J., Edström L., Grimby L. Effects of excessive use of remaining muscle fibers in prior polio and LV lesion. Muscle Nerve. 1988 Dec;11(12):1219–1230. doi: 10.1002/mus.880111206. [DOI] [PubMed] [Google Scholar]
  7. Brooke M. H., Kaiser K. K. Muscle fiber types: how many and what kind? Arch Neurol. 1970 Oct;23(4):369–379. doi: 10.1001/archneur.1970.00480280083010. [DOI] [PubMed] [Google Scholar]
  8. Chi M. M., Hintz C. S., Coyle E. F., Martin W. H., 3rd, Ivy J. L., Nemeth P. M., Holloszy J. O., Lowry O. H. Effects of detraining on enzymes of energy metabolism in individual human muscle fibers. Am J Physiol. 1983 Mar;244(3):C276–C287. doi: 10.1152/ajpcell.1983.244.3.C276. [DOI] [PubMed] [Google Scholar]
  9. Dalakas M. C., Sever J. L., Madden D. L., Papadopoulos N. M., Shekarchi I. C., Albrecht P., Krezlewicz A. Late postpoliomyelitis muscular atrophy: clinical, virologic, and immunologic studies. Rev Infect Dis. 1984 May-Jun;6 (Suppl 2):S562–S567. doi: 10.1093/clinids/6.supplement_2.s562. [DOI] [PubMed] [Google Scholar]
  10. Edström L., Ekblom B. Differences in sizes of red and white muscle fibres in vastus lateralis of musculus quadriceps femoris of normal individuals and athletes. Relation to physical performance. Scand J Clin Lab Invest. 1972 Oct;30(2):175–181. doi: 10.3109/00365517209081108. [DOI] [PubMed] [Google Scholar]
  11. Einarsson G., Grimby G. Strengthening exercise program in post-polio subjects. Birth Defects Orig Artic Ser. 1987;23(4):275–283. [PubMed] [Google Scholar]
  12. Essén-Gustavsson B., Henriksson J. Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise. Acta Physiol Scand. 1984 Apr;120(4):505–515. doi: 10.1111/j.1748-1716.1984.tb07414.x. [DOI] [PubMed] [Google Scholar]
  13. Essén B., Jansson E., Henriksson J., Taylor A. W., Saltin B. Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiol Scand. 1975 Oct;95(2):153–165. doi: 10.1111/j.1748-1716.1975.tb10038.x. [DOI] [PubMed] [Google Scholar]
  14. Gollnick P. D., Armstrong R. B., Saltin B., Saubert C. W., 4th, Sembrowich W. L., Shepherd R. E. Effect of training on enzyme activity and fiber composition of human skeletal muscle. J Appl Physiol. 1973 Jan;34(1):107–111. doi: 10.1152/jappl.1973.34.1.107. [DOI] [PubMed] [Google Scholar]
  15. Gollnick P. D., Armstrong R. B., Saubert C. W., 4th, Piehl K., Saltin B. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol. 1972 Sep;33(3):312–319. doi: 10.1152/jappl.1972.33.3.312. [DOI] [PubMed] [Google Scholar]
  16. Grimby G., Einarsson G. Muscle morphology with special reference to muscle strength in post-polio subjects. Birth Defects Orig Artic Ser. 1987;23(4):265–274. [PubMed] [Google Scholar]
  17. Halstead L. S., Rossi C. D. Post-polio syndrome: clinical experience with 132 consecutive outpatients. Birth Defects Orig Artic Ser. 1987;23(4):13–26. [PubMed] [Google Scholar]
  18. Henriksson J., Reitman J. S. Quantitative measures of enzyme activities in type I and type II muscle fibres of man after training. Acta Physiol Scand. 1976 Jul;97(3):392–397. doi: 10.1111/j.1748-1716.1976.tb10279.x. [DOI] [PubMed] [Google Scholar]
  19. Houston M. E., Bentzen H., Larsen H. Interrelationships between skeletal muscle adaptations and performance as studied by detraining and retraining. Acta Physiol Scand. 1979 Feb;105(2):163–170. doi: 10.1111/j.1748-1716.1979.tb06328.x. [DOI] [PubMed] [Google Scholar]
  20. Jakobsson F., Borg K., Edström L., Grimby L. Use of motor units in relation to muscle fiber type and size in man. Muscle Nerve. 1988 Dec;11(12):1211–1218. doi: 10.1002/mus.880111205. [DOI] [PubMed] [Google Scholar]
  21. Jolesz F., Sreter F. A. Development, innervation, and activity-pattern induced changes in skeletal muscle. Annu Rev Physiol. 1981;43:531–552. doi: 10.1146/annurev.ph.43.030181.002531. [DOI] [PubMed] [Google Scholar]
  22. MacDougall J. D., Sale D. G., Moroz J. R., Elder G. C., Sutton J. R., Howald H. Mitochondrial volume density in human skeletal muscle following heavy resistance training. Med Sci Sports. 1979 Summer;11(2):164–166. [PubMed] [Google Scholar]
  23. Opie L. H., Newsholme E. A. The activities of fructose 1,6-diphosphatase, phosphofructokinase and phosphoenolpyruvate carboxykinase in white muscle and red muscle. Biochem J. 1967 May;103(2):391–399. doi: 10.1042/bj1030391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. PADYKULA H. A., HERMAN E. The specificity of the histochemical method for adenosine triphosphatase. J Histochem Cytochem. 1955 May;3(3):170–195. doi: 10.1177/3.3.170. [DOI] [PubMed] [Google Scholar]
  25. Pette D., Vrbová G. Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve. 1985 Oct;8(8):676–689. doi: 10.1002/mus.880080810. [DOI] [PubMed] [Google Scholar]
  26. Salmons S., Henriksson J. The adaptive response of skeletal muscle to increased use. Muscle Nerve. 1981 Mar-Apr;4(2):94–105. doi: 10.1002/mus.880040204. [DOI] [PubMed] [Google Scholar]
  27. Schantz P. G., Källman M. NADH shuttle enzymes and cytochrome b5 reductase in human skeletal muscle: effect of strength training. J Appl Physiol (1985) 1989 Jul;67(1):123–127. doi: 10.1152/jappl.1989.67.1.123. [DOI] [PubMed] [Google Scholar]
  28. Schantz P. Capillary supply in hypertrophied human skeletal muscle. Acta Physiol Scand. 1982 Apr;114(4):635–637. doi: 10.1111/j.1748-1716.1982.tb07037.x. [DOI] [PubMed] [Google Scholar]
  29. Tesch P. A., Larsson L. Muscle hypertrophy in bodybuilders. Eur J Appl Physiol Occup Physiol. 1982;49(3):301–306. doi: 10.1007/BF00441291. [DOI] [PubMed] [Google Scholar]
  30. Tesch P. A., Thorsson A., Kaiser P. Muscle capillary supply and fiber type characteristics in weight and power lifters. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jan;56(1):35–38. doi: 10.1152/jappl.1984.56.1.35. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES