Skip to main content
Metallomics: Integrated Biometal Science logoLink to Metallomics: Integrated Biometal Science
. 2023 Apr 25;15(5):mfad025. doi: 10.1093/mtomcs/mfad025

Quantitative elemental imaging in eukaryotic algae

Stefan Schmollinger 1,2,2,, Si Chen 3, Sabeeha S Merchant 4,5
PMCID: PMC10209819  PMID: 37186252

Abstract

All organisms, fundamentally, are made from the same raw material, namely the elements of the periodic table. Biochemical diversity is achieved by how these elements are utilized, for what purpose, and in which physical location. Determining elemental distributions, especially those of trace elements that facilitate metabolism as cofactors in the active centers of essential enzymes, can determine the state of metabolism, the nutritional status, or the developmental stage of an organism. Photosynthetic eukaryotes, especially algae, are excellent subjects for quantitative analysis of elemental distribution. These microbes utilize unique metabolic pathways that require various trace nutrients at their core to enable their operation. Photosynthetic microbes also have important environmental roles as primary producers in habitats with limited nutrient supplies or toxin contaminations. Accordingly, photosynthetic eukaryotes are of great interest for biotechnological exploitation, carbon sequestration, and bioremediation, with many of the applications involving various trace elements and consequently affecting their quota and intracellular distribution. A number of diverse applications were developed for elemental imaging, allowing subcellular resolution, with X-ray fluorescence microscopy (XFM, XRF) being at the forefront, enabling quantitative descriptions of intact cells in a non-destructive method. This Tutorial Review summarizes the workflow of a quantitative, single-cell elemental distribution analysis of a eukaryotic alga using XFM.

Keywords: heavy metal detoxification, iron, copper, XRF, SXRF, Chlamydomonas

Graphical Abstract

Graphical Abstract.

Graphical Abstract

Elemental imaging of a single-celled eukaryotic alga using X-ray fluorescence.


The aim of this review is to (1) highlight the contributions of different elements to photosynthetic life and the concepts of how organisms control their elemental composition, (2) introduce the methodologies involved in studying elemental distributions in cells, especially XFM, (3) review the current state of XFM studies in eukaryotic algae, and (4) extract a methodology framework for conducting XFM studies from these works. It is our goal to facilitate the entry into the field of elemental research for algae scholars encountering questions of metal homeostasis and elemental heterogeneity for the first time, and to encourage the use of quantitative elemental imaging approaches for the purpose of determining biological function.

Elemental composition of cells

The elements of the periodic table are the indivisible foundation of all matter, including all biological life on our planet (Fig. 1). Every component of a cell is assembled from a careful selection of elements, which can either be essential to the organism, defined by their irreplaceability and absolute requirement to complete the vegetative or reproductive life cycle,1 or provide specific beneficial advantages, improving the organism’s fitness in general or in specific situations or environmental niches. The most prominent elements in living matter are C, H, N, O, P, and S, which are essential, account for most of biomass, and constitute the backbone of proteins, carbohydrates, nucleic acids, and lipids.2–4 In addition, there are many other elements that are useful to living organisms in lower abundance.1 For example, it is estimated that ∼40% of all enzymes utilize a uniquely suited element outside the group of macronutrients (CHNOPS) within their catalytic centers to enable catalysis.5,6 The range of essential or beneficial elements can change between different organisms depending on the organism's environmental niche and its metabolism, the latter consequently defining the organism's enzyme portfolio.

Fig. 1.

Fig. 1

Elements of interest in life. (A) Periodic table of the elements showing relevant elements to living organisms. Elements are grouped into macronutrients (CHNOPS, yellow background), the major cations (Na, Mg, K, and Ca, green background), major trace elements relevant for enzymatic function in many organisms (blue background), nutrients that are relevant for specialist's enzyme function (brown background), and elements that affect metabolism (beneficial or toxic) in living organism without being directly utilized in enzymes (bioactive, red background). (B) Elemental composition of the eukaryotic green algae C. reinhardtii. Solid lines indicate ICP-MS/MS analysis; dotted lines indicate TOC/TN measurements.

Most organisms use cations (K,7–10 Mg,11–15 Ca,16–19 and to a lesser degree Na20–24) and the Cl anion,25–28 all of which are abundant constituents of biological matter, to regulate osmotic pressure and pH, build gradients across membranes that facilitate energy production, transport processes, or signal transduction.29 These ions also serve as allosteric regulators of enzyme activity,9,30 even participate in catalysis (e.g. Mg in isocitrate lyase31,32 or Ca in the oxygen-evolving complex of PSII33), or bind to metabolites (most importantly, Mg-ATP and Mg-chlorophyll), critically enabling their utility.

Additionally, organisms require various additional sets of elements in trace amounts (including many metal ions) to enable critical chemical functionalities that are not provided from functional groups found on metabolites or amino acids.4,34 These micronutrients/trace elements are often required co-factors for metabolically essential enzymes, and consequently, their acquisition, intracellular distribution, and utilization are crucial aspects of cellular metabolism.4 Trace elements typically present the most interesting targets for elemental imaging because of the impact of their chemistry on cell health and metabolism, the range of their abundances in an organism, and the dynamic regulation involved in their utilization.4,35

A set of trace elements is essential for most organisms, including Fe,36–38 Cu,39–43 Co,44–47 Ni,48–51 Mn,52–55 Zn,56–60 Se,6170 I,71–74 and Mo.75–77 Many of these elements have oxidation states that are stable under physiological conditions, and a role in redox chemistry is a common function for many of the trace elements. Fe, Cu, and Mn, with multiple stable oxidation states, are therefore among the most abundant and important trace elements for all organisms; at lower abundance, Ni, Co, and Mo are also required by many organisms.5,36,39,44,48,52,56,75,78–80 Fe is used most famously in hemoglobin for O2 transport, but has many other uses, e.g. in electron transport (e.g. in complex I, II, and III of the mitochondrial electron transfer chain) and as an essential catalyst in many critical enzymes (e.g. in aconitases, catalases, and nucleases), either bound directly to amino acids or alpha-ketoglutarate, complexed within the tetrapyrrole heme, or assembled into Fe–S clusters.81–86 Similarly, Cu can also be used for both oxygen (e.g. hemocyanin) or electron transport (e.g. cytochrome c oxidase), and can directly be bound to amino acids in catalytic centers of enzymes43,87,89–91 Mn is also essential and critically involved in several enzymes in DNA metabolism, detoxification of reactive oxygen species, and carbohydrate metabolism.92–95 Fe, Cu, and Mn, in addition to their many important contributions to general metabolism, are also critically employed in photosynthetic electron transfer and chloroplast metabolism.96,97 Ni is used in enzymes in a wide range of organisms, e.g. in ureases and hydrogenases.98 Co is utilized as a cofactor in a few enzymes directly, but is most commonly utilized at the center of cobalamin (also known as vitamin B12), which is critical in methionine biosynthesis and nitrogen fixation.44,99,100 Mo, outside of bacterial FeMo-nitrogenase, is usually bound to the pterin cofactor Moco, which is used in many important enzymes, e.g. nitrate reductase, xanthine oxidoreductase, and sulfite oxidases.75,101–103 Zn is similarly abundant and widespread as a trace element as Fe, Cu, and Mn, but is used as a Lewis acid and a structural component for proteins in most organisms.104–106 Se, most prominently, is utilized as selenocysteine in specific enzymes requiring the element in their catalytic centers, e.g. glutathione peroxidases.61,67,107111 I is used in thyroid hormones, essential for vertebrates, and has a role in oxidative stress response in algae.71–74

Other elements, V,67–70,110,111 B,112–117 Si,118–121 As,122–124 Br,125–127 Sr,128–130 Cd,131–134 W,135–139,140 Hg,141–143 La,144–147 Ce,148–150 and Nd,151,152 are not commonly used in most organisms, but some specialists have found unique roles for these elements.144,146,148,151 Additionally, many of these nutrients only useful to specialist are toxic, and other, bioactive elements for which no direct enzymatic use has yet been identified (Fig. 1), can accumulate in organisms involuntarily, hijacking uptake routes for other, similar ions. They interfere with biological processes, most commonly in detrimental fashion. Together with these harmful activities associated with the redox-active trace elements (Fe, Cu, Mn, Ni, Co, and Mo), trace nutrients pose an inherent risk to cell integrity. Therefore, the chemical reactivities that make these elements useful in the first place must be controlled intracellularly to avoid unintended reactions, e.g. by using compartmentalization or detoxification mechanisms.153–155 The concentration of many of these elements in the direct environment of a cell is a critical parameter, determining if the organism is starving for the element as a nutrient, when either abundance or bioavailability is low, or if cell health is threatened by overexposure, exceeding demand, and the capacity for detoxification/containment.156 The toxicity can either be directly attributed to detrimental reactivities of the element when uncontrolled, the production of secondary toxic products, e.g. reactive oxygen species, or enzyme/metabolite mis-metalation. Mis-metalation is largely attributed to the inherent flexibility in proteins and the similar physical properties (ionic radii, charge, and coordination preferences) of the biologically common trace metal.157,158 Most enzymes are tuned to function with a specific metal cofactor. Binding of a different, similar metal at the active site can result in loss-of-function, or worse, the production of unintended products or promotion of side-reactions.154,159,160 All organisms therefore carefully control their elemental composition at the point of uptake, resulting in specific cellular quotas, especially in the case of redox active trace elements. Cells also employ elaborate strategies to avoid mis-metalation intracellularly, including the compartmentalization of specific elements to ensure that the correct metal binds to newly synthesized proteins, or the use of metallochaperones to ensure correct delivery through protein–protein interactions.161–163 Some metals are associated with organic groups or build into large clusters (e.g. Fe in heme and Fe–S clusters) for similar reasons.

The pathways for trace element metabolism are among the most ancient in biology,164 and the general concepts involved in trace metal utilization are well conserved across organisms. Photosynthetic organisms specifically have unique requirements with respect to the elemental composition because of the metabolic demand of the photosynthetic apparatus and the specific pressures they experience from the environmental niches they occupy. Processes realized by abundant enzymes weigh harder on the specific elemental quotas, and proteins involved in photosynthetic carbon fixation (most prominently photosystems I and II, the Cyt b6f complex, and the enzymes of the Calvin–Benson cycle) are among the most abundant proteins in photosynthetic organisms. Magnesium is especially important here, with 25% of Mg in plants being found in chloroplasts, where it is integral for the light-capturing chlorophylls (Mg-containing tetrapyrroles) and in the activation of the carbon-capturing RuBisCO.11,165,166 The photosynthetic electron transfer chain also requires large amounts of Fe; 80–90% of Fe in leaves is found in the chloroplast.167 Most abundantly, Fe is found in photosystem I, which is utilizing three 4Fe–4S centers to transport electrons from the acceptor to the donor side, and in ferredoxin (2Fe–2S center), the soluble carrier protein distributing photosynthetically derived electrons to various chloroplast processes, including NADPH production, nitrogen assimilation, and chlorophyll biosynthesis.97,168 Cu in plastocyanin, the soluble electron carrier between the Cyt b6f complex and photosystem I, and Mn and Ca, in the oxygen-evolving complex of photosystem II, are also vital in photosynthetic electron transport.17,39,169 Zn is involved in photosynthetic CO2 fixation, in the catalytic center of carbonic anhydrases (CAHs), and in the assembly of RuBisCo.170,171

Intracellular elemental heterogeneity

The elemental composition of an organism is a dynamic function of the metabolic needs of a cell. As mentioned above, it varies between organisms depending on the functions they employ, but even within a given species, it is adjusted between different metabolic or developmental stages, tissues, and cell types, and in response to the availability of nutrients and other stimuli in the environment.

Nutrient limitation is a major driver of acclimation responses to the elemental composition. While limitation to essential elements often results in cell cycle arrest or even cell death, the elemental composition of non-essential, but beneficial trace nutrients can be most variable. Fe bioavailability is low both in aquatic and cropland environments, mainly because of its low solubility in the more oxidized, but most prevalent, Fe(III) state.172,173 Its central role in the abundant photosynthetic apparatus, which most primary producers depend on for carbon fixation, assures that Fe availability limits virtually all forms of life.174,175 An evolutionary adaptation in some photosynthetic organisms to low Fe environments was therefore to use a Cu-containing protein, plastocyanin, instead of the Fe-containing Cyt c6, for the same function, namely, the transport of electrons between Cyt b6f and photosystem 1.169,176 While this reduces the organisms’ Fe quota, simultaneously, its dependence on Cu becomes greater. Other acclimation mechanisms also involve the intracellular recycling of metal cofactors and subsequent redistribution to other processes, according to a hierarchy of essentiality in the organism.177–180

Intracellular over-accumulation of various elements beyond the necessary quota can also affect cell health and occurs either in polluted or otherwise nutrient-imbalanced environments. Plants, e.g. accumulate P when Zn is limiting and vice versa,181–183 while the green alga Chlamydomonas accumulates large amounts of Cu in Zn-limiting conditions.184,185 Sequestration in specialized, intracellular compartments is a common strategy to either detoxify over-accumulating, biologically undesired elements, store scarce nutrients in preparation for periods of limitation or for future generations, sequester a resource away from competitors, or buffer nutrients temporarily during metabolic transitions.186–189 Acidocalcisomes are lysosome-related organelles, first identified in trypanosomes but widely present in eukaryotes.190 Acidocalcisomes are rich in Ca and P,191,192 in some organisms also K,193 and can temporarily accumulate various micronutrient metals and toxic elements. The eukaryotic green alga Chlamydomonas, e.g. has been found to sequester the trace nutrients Cu, Mn, and Fe and the heavy metal Cd in acidocalcisomes in periods of over-accumulation.184,194–197 Vacuoles in general are the most important storage sites in eukaryotes, including photosynthetic organisms,187,189,198 but other means of storage and sequestration can also be utilized. Proteins like ferritin, a soluble 24-subunit oligomer, can sequester trace elements, ∼4500 Fe ions in ferritins case,199,200 and other organelles like the starch-separated pyrenoid in the chloroplast have been found to contribute to Cd sequestration.196,197,201

Research of metal homeostasis not only aims to identify acclimation processes in natural settings but can also be exploited in bioremediation or biofortification applications. While heavy metals, z > 20, density >5 g/cm3,202 can be naturally present in specific soil or aquatic environments, more importantly, human activities, from mining and industrial production processes to domestic and agricultural practices, have led to an increased contamination of natural habitats with toxic metals.203–205 Cd, As, Pb, Cr, and Hg are thereby the most prominent elements, all presenting severe dangers to human health.203 While conventional methods like chemical precipitation, reverse osmosis, adsorption, or electrodeposition are used to remove heavy metals from environments, the use of biological organisms can be much more efficient and cost-effective.206,207 Photosynthetic algae, e.g. are uniquely positioned to be utilized in the removal of heavy metals in soil and aquatic environments, and research into their trace metal metabolism can greatly facilitate the effectiveness of these processes.208–210 Biofortification on the other hand, is a biotechnological process intended to increase the nutritional value of human nutrition, with major crop plants being generally poor sources of micronutrients.211 Targeting photosynthetic organisms like crops or algae, which are used as animal feed stocks or in natural supplements, is an efficient way to improve nutritional deficiencies.212

Quantitative, intracellular elemental distributions

Whether it is for research or in the pursuit of biotechnological applications, the acquisition of spatially resolved, quantitative elemental maps is a key tool for researchers to identify the molecular mechanisms involved in elemental homeostasis. Elemental distribution can identify the function, specificity, and directionality of membrane transporters, which are involved in the uptake, removal, or intracellular distribution of specific nutrients in the cell. Transport mechanisms are equally involved in storage or sequestration efforts. Other proteins involved in elemental homeostasis, e.g. transcriptional/translational control factors, signal transduction components, chaperones, buffering/protective proteins or metabolites, and major client proteins, e.g. abundant enzymes requiring a specific elemental cofactor, are also required to achieve native elemental distribution. Using specific mutants and analyzing differential elemental distribution maps can facilitating the identification of the function of these proteins in the first place.213 Detailed elemental distribution maps in different stages of nutrition for individual elements or upon other environmental perturbations (pH, temperature, light) can help in identifying the molecular mechanisms utilized in acclimation.

Therefore, over the past decades, a number of analytical techniques have been developed to determine intracellular elemental distribution, utilizing different properties to distinguish the elements. The various techniques all have different advantages and disadvantages, making the different applications quite complementary, especially with regards to sensitivity (detection limit and quantifiable range), obtainable spatial resolution, range of elements that can be (simultaneously) recorded, sample preparation, preservation, the amount of material required, and the kind of artefacts produced either from sample preparation or from the methodology itself. For detailed reviews of the individual methodologies see,214–216 and an in-depth discussion of strengths and weaknesses between the most common individual techniques can be found here.217 Two major categories can be distinguished: (i) fluorescence microscopy-based techniques using element-sensitive dyes or genetically encoded metal-binding sensors and (ii) scanning technologies using either mass spectrometry [Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS); nanoscale Secondary Ion Mass Spectrometry (nanoSIMS)] or the detection of element-specific energy signatures [Synchrotron Radiation X-Ray Fluorescence Microscopy, abbreviated either (XFM, XRF, SXRF, or SRXRF); Particle Induced X-ray Emission (PIXE); Energy Dispersive X-ray Spectroscopy, abbreviated either (EDX, EDS, or EDXS)] to determine the elemental composition.214

The fluorescence microscopy-based techniques rely on the chemical properties of the individual molecular probe to identify a specific element, sometimes even a specific oxidation state, resulting in a fluorescence change (reversible or irreversible). Coupled with an adequate fluorescence microscope with the necessary resolution, which is available in many laboratories, the probes allow one to quickly analyze intracellular elemental distributions in many cells.218 The analysis is limited to a set of compatible, non-overlapping fluorescent signals at a time, but the probes can be utilized in living cells to specifically assess the labile, accessible fraction of the element in the cell. Quantitation of the labile metal pool using fluorescence-based probes is possible,219 but access to particularly tightly bound, or less accessible, sequestered elemental cofactors might preclude capturing the total metal distribution using probes.

Outside of the probe-based techniques, XFM is a popular choice to determine quantitative intracellular elemental maps.215,220 XFM takes advantage of the unique electron orbital configurations of each element (Fig. 2). Using a highly focused X-ray beam at an energy above the binding energy of a core electron of an element can result in the removal of the electron from the atom. Upon removal, another electron from an outer shell can rapidly transition to the inner shell and fill the hole. The energy difference between the orbitals, specific for each transition (Fig. 2B), can be emitted as X-ray fluorescence, which can be recorded and analyzed using an energy-dispersive detector.221 Using a highly focused incident X-ray beam and a precisely controllable sample stage, 2D-projection images of the elemental composition of the material in the path of the beam are then assembled spot by spot at high resolution. At this point, most research utilizes highly brilliant synchrotron radiation sources to fast determine subcellular distribution maps at nanoscale, crucially limiting the amount of cells that can be analyzed.216 Benchtop systems, however, continue to improve in resolution222 and can present an attractive route to improve access to elemental imaging in the future. There are >50 synchrotrons globally, many of them offering XFM capabilities; pixel sizes below 100 nm can be achieved at multiple beamlines at synchrotrons including,217,223–231 which is well below the threshold of what is generally considered subcellular resolution (<1 μm, nanometer scale). Due to the ability of X-ray photons to penetrate biological material, XFM can be used to examine much thicker samples compared to those used for electron microscopy, often removing the requirement for sectioning, especially for single-cell organisms, and therefore facilitating sample processing and whole-cell analysis simultaneously.

Fig. 2.

Fig. 2

Principle of X-ray fluorescence emission. (A) Exemplary schematic of the physics at a Cu atom. An incident X-ray photon from a synchrotron source with sufficient energy to excite a core electron, leaving a hole in the process, which is subsequently filled by an electron from a different shell while emitting fluorescence equivalent to the energy difference. (B) Overview of the nomenclature of different electron transitions. For X-ray fluorescence microscopy, the K and L series are the most relevant for detection.

Mass spectrometry-based techniques (LA‐ICP‐MS or nanoscale SIMS) are alternative options, offering isotope-specific detection of elements.232 In principle, these techniques use a highly focused laser (LA-ICP-MS) or ion beam (SIMS) to release material from a specific spot of a sample (cell section in the case of intracellular studies), which is then analyzed in a mass spectrometer for its elemental composition. Cs+ and O ion beams have a high ionization potential, allowing the determination of intracellular elemental maps with high detail, even of elements present in trace amounts.184,215,232,233 This has several advantages over XFM. By using the mass of an element instead of the electron configuration for detection, individual isotopes of element can be distinguished, allowing time-course studies with specific isotopes in pulse-chase mode. Lower resolution images of regions of the sectioned material allow to analyze a larger number of cells than can be analyzed with XFM. Both MS-based applications are considered destructive, in the sense that material of the specimen is used for the analysis, compared to the techniques that probe electron configurations or molecular probes, which are generally considered non-destructive, not consuming material for the identification of an element. The radiation, however, used for both of these techniques can, nevertheless, induce changes in the sample during detection. Radiation damage to cell structures, especially with long dwell times or after repeated scans, is a concern.234 While submicron resolution has recently been achieved (0.6 μm spot size235), the resolution of LA-ICP-MS is still one order of magnitude lower than the other techniques, limiting its utility to determine high-resolution intracellular structures in eukaryotic alga. SIMS at nanoscale can achieve similar resolutions to XFM, sub-100 nm pixel size, but matrix effects have long been a challenge for quantitative aspects. Additionally, the inherent nature of mass-spectrometry applications, which rely on the removal of material for elemental analysis, makes it difficult, but not impossible, to analyze whole cells quantitatively, requiring subsequent, repeated scans of the same area to fully capture the three-dimensional cell.236

Eukaryotic algae as subjects

Eukaryotic algae are excellent subjects for quantitative elemental imaging studies. Algae is a term of convenience, combining several diverse eukaryotic groups of photosynthetic organisms.237 Many algae are unicellular eukaryotes of a size that is convenient for imaging applications; not too small to require too high of a resolution on the instrumentation end to determine subcellular distribution, but small enough to not require sectioning in applications that do not require it. They are important primary producers with crucial environmental roles, often inhabiting nutrient-limited environments on land or in the oceans, making them interesting research subjects. Green algae are within the Viridiplantae, which also contain the land plants. Together with the red algae (rhodophytes) and glaucophytes in the plantae supergroup, these algae are the result of primary endosymbiosis, where their chloroplasts arose from a free-living cyanobacterium.238 Outside the plant lineage, several diverse groups of algae are found: heterokonts (diatoms, brown algae), dinoflagellates, apicomplexans, haptophytes, crypotomonads, euglenoids, and chlorarachniophytes are all eukaryotic algae resulting from secondary or tertiary endosymbiosis, receiving their chloroplast from a eukaryotic donor.237,239 Within these groups, several organisms have been analyzed in detail, but probably no individual alga more than the green alga Chlamydomonas reinhardtii, and no group more than the diatoms of the genus Thalassiosira.

Chlamydomonas reinhardtii is a unicellular green alga that has been widely used as a eukaryotic, photosynthetic reference system. It is a haploid, facultative phototroph with a short generation time (∼6 h in the presence of a reduced carbon source). Its genome has been fully sequenced, and all three genomes can be targeted for modification.240,241 Chlamydomonas has been widely used for research on algal metabolism, and has served as a resource for commercial applications of algae as sources of biofuels or bioproducts.242,243 Its common ancestry with land plants, albeit distant (>1 billion years ago), allows for cross-comparisons to the intensively studied plant systems, and research performed in either to be cross-informative. Yet Chlamydomonas is less complex (single, uniform cell), contains smaller gene families and less complex gene structures. In terms of elemental composition, the photosynthetic electron transfer chain is virtually identical with that in land plants, and the alga utilizes a broad spectrum of metal cofactors to sustain its photosynthetic, respiratory, and metabolic capabilities. In the past decades, studies have been carried out to identify the major transporters involved in nutrient acquisition and distribution.156,185,244–248 Mechanisms for nutrient-sparing and recycling have been discovered,169,177,249–251 and storage sites were identified,156,184,194,195,252–254 making this organism particularly useful for elemental analysis studies.

Thalassiosira is a genus of centric diatoms found in diverse marine and freshwater ecosystems, widely recognized for their substantial contribution to global primary productivity.255–257 Their defining feature is the silicified cell walls, consisting of species-specific, fine-scaled nano-structures that are built intracellularly in a specialized compartment before being exported to assemble the cell wall.258 The genus contains mostly single-celled species, but, especially in marine species, the single cells can be connected via chitin fibrils to ‘string of beads’ colonies.257 The genomes of Thalassiosira pseudonana259 and Thalassiosira oceanica260 have been fully sequenced, and protocols for genetic manipulation of T. pseudonana261 and Thalassiosira weissflogii262 have been developed. Thalassiosira's elemental metabolism has been of particular interest to researchers, especially that of silicon, with regards to the synthesis of its cell wall, and iron, with regards to iron’s role in limiting the growth of alga in oceanic, high nutrient/low chlorophyll environments, restricting their potential for carbon sequestration.260,263–266 Algae have been excellent subjects for elemental imaging studies from the beginning; early work developing XFM instrumentation already involved images of diatoms.267 The first elemental distribution maps of eukaryotic algae using fully developed XFM setups were also taken from diatoms, T. weissflogii, and natural isolates with 0.5 μm step size at the Advanced Photon Source (APS, Argonne, USA).268,269 The authors established the quantitative capabilities for Si, Mn, Fe, Ni, and Zn in single cell analysis and determined the detection limits of the technique. The setup was later used by Twining et al. to determine the Fe distribution in natural diatom and dinoflagellate isolates upon ocean iron fertilization,270 or in specific oceanic regions,271 Adams et al. used it to determine Cu distribution in the diatoms Phaeodactylum tricornutum and Ceratoneis closterium, as well as in the green alga Tetraselmis sp.272 Nuester et al. determined the Fe distribution in a similar setup with improved resolution, 0.2 μm step size, in the diatoms T. pseudonana and T. weissflogii.273 Another diatom, Cyclotella meneghiniania, was used in a study by de Jonge et al., significantly improving the resolution of XFM tomography to a useful range (<400 nm) for single cells smaller than 10 μm diameter.274 Diaz et al. demonstrated the utility of XFM for green alga research, using Chlamydomonas and Chlorella species to demonstrate Fe sequestration in stationary cells.275 Elemental maps of Fe, Zn, and K were obtained from frozen hydrated Chlamydomonas cells with <100 nm spatial resolution during the development of the Bionanoprobe at the Advanced Photon Source.223 The alga, together with a different green alga, Ostreococcus sp., was also the subject for demonstrating the utility of ptychography, a coherent diffraction imaging technique that uses multiple overlapping regions of a cell to provide superior spatial resolution. Deng et al. demonstrated <20 nm spatial resolution of ultrastructure imaging of frozen-hydrated algae with ptychography while simultaneously recording fluorescence spectra to determine the intracellular P, Ca, K, and S distributions.193,276 3D reconstruction of cellular P, Ca, S, Cl, and K distributions and ultrastructure from ptychographic tomography using GENFIRE also took advantage of Chlamydomonas.277 Outside of method development, XFM has proven useful for the characterization of intracellular metal sequestration sites in Chlamydomonas at the APS, and at the European Synchrotron Radiation Facility (ESRF, Grenoble, France). Researchers found Fe, Cu, and Mn to be sequestered in cytosolic vacuoles, acidocalcisomes,184,194,195 while the heavy metal Cd was found to be localized both in acidocalcisomes and the pyrenoid in the chloroplast.196,201 Similarly, the green alga Coccomyxa actinabiotis was analyzed at 100 nm resolution in studies aimed at identifying the mechanisms for Co and Ag tolerance.278 Coccolithophores, eukaryotic algae from the haptophytes and renowned for their calcite exoskeleton, were analyzed for elemental distributions up to Sr using XFM at 50 nm resolution in artificial seawater enriched with trace nutrients.279 They were also the subject of an X-ray ptychography tomography study at 30 nm resolution determining their ultrastructure.280

Controlling variance in elemental composition of algae

Successful elemental imaging for elemental imaging starts with a controlled elemental environment during cultivation of the alga. For this reason, a chemically defined medium is superior to a complex medium recipe. For Chlamydomonas, the most popular media are TAP/TP and HS/HSM (± acetate as a reduced carbon source), which are both chemically defined.281 Avoiding components like sea water, peptone, or yeast extract would be ideal if possible. Both Chlamydomonas media originally used a trace element mixture recipe developed by Hutner,282 which can vary substantially in its content in between batches. Hutner’s solution was not specifically optimized for the alga; specifically, it lacks Se completely but contains both Co and B, which are not utilized by the alga.283 Instead of the single trace element additive derived from Hutner, a 7-solution trace element suite was developed specifically for C. reinhardtii, which changed the composition accordingly and additionally adjusted the concentrations of the other trace elements (especially Zn but also Fe, Cu, and Mn) to better match the algae's metabolic demand.283 The use of controlled, high-purity chemicals for media preparation additionally ensures reproducible conditions. The water, glass, and plasticware used for media preparation and cultivation should be low in contaminants. Acid-washing of glassware is recommended, overnight incubation in 6N HCl followed by thorough rinsing in clean water to remove residual HCl.284 Depending on the condition of interest, liquid pre-cultures used for inoculation at a specific cell density, already grown in the elemental condition intended for analysis, additionally improve the reproducibility between experiments, which can be useful if there are long periods in between replicates (e.g. in between beamline visits).

Sample preparation for XFM measurements

The most crucial component of sample preparation is the trade-off between the necessity to deliver the sample material in the required form to the imaging application of choice and to simultaneously preserve the sample material in an unaltered state that reflects the condition that is analyzed.217 Long incubation steps, changes in temperature, necessary concentration steps (centrifugation), or buffer changes to accommodate fixation can potentially alter the state of the sample material on its way from its habitat (or the growth chamber in a laboratory) to the imaging application. For photosynthetic organisms, changes in illumination and aeration during sample preparation are also potentially critical, as they can affect metabolism quickly.285,286 Metal-sensitive probes compatible with live cell imaging are probably the gold standard in this regard, allowing the researcher to keep cells as close to the state of interest as possible. For XFM, rapid vitrification of cells in liquid ethane (e.g. using a FEI Vitrobot Mark IV plunge freezer193,223,276,277 or similar) is minimally invasive, and preserves the cell in a frozen hydrated state. Successful settings for vitrification of Chlamydomonas on the Vitrobot were reported at a temperature between 20 and 22°C, humidity of 100%, with a blot time of 2 s at blot force 0, blot total 1,193,276,277 or a blot time of 3 s at blot force 2, blot total 1, wait and drain time of 0 s.195 For this to be effective, the beamline needs to support imaging at low temperatures,223,226 and the samples to never thaw after the initial freezing event. A major limitation to using vitrification for sample preparation is the availability of cryo‐XFM instruments capable of performing subcellular analyses at low temperatures, and access to specific equipment like plunge freezers can also be prohibitive. Additionally, cryo-preserved samples can collect ice deposits from environmental humidity, especially during, even very brief, transfers between any type of equipment (plungers, microscopes, XFM instruments, and storage/shipping vessels), which can result in a loss of the ability to produce a useful XFM image from the sample. Alternatively, chemical fixation (e.g. using 4% paraformaldehyde) at an early stage of sample preparation is still used and effective, and allows imaging to take place at XFM instruments at room temperature. The elements of interest are crucial in the choice of fixation for any specific study. Chemical fixation, especially using various popular aldehydes, can be problematic for the preservation of the native state, especially of highly diffusible ions, e.g. Na, K, and Cl.226,287 A previous study195 showed that the intracellular amounts of Fe and Cu were similar in vitrified and chemically fixed cells, and the distribution patterns were comparable with chemical fixation, albeit not as crisp as in the frozen-hydrated cells. Aldehydes can also alter membrane permeability,287 which might affect intracellular distribution.

In both cases, the cell material needs to be transferred either to film196 or Si3N4 windows,193–195,223,276,277 compatible with the downstream beamlines, prior to freeze-plunging or chemical fixation. More elaborate analyses like ptychography or tomography reconstruction might require specific sample holders or additional sample preparation, which should ideally already be considered at this stage. The Si3N4 windows can be pretreated with poly-L-lysine to improve adhesion of alga cells (a single droplet of poly-L-lysine applied to the window and incubated for 30 min at 37 °C before the remainder of the droplet is removed and the cells are spotted). For quantitative applications, the cells need to be freed from media remnants,195,196 with brief washing steps (ideally with water as the last step), which has to be done prior to freeze plunging,278 but can be done after chemical fixation, when cells are already spotted on the carrier.195 Washing is crucial, but extended washing can reduce the number of cells on the sample holder. The force by which the washing solution is applied to and removed from the sample holder contributes to the displacement. Using poly-L-lysine to assist in adhesion, a good starting point for the cell concentration of a motile Chlamydomonas culture to be spotted on a Si3N4 window was found to be 1 × 107 cells/ml, spotting between 50 and 100 μl.195 The concentration of the cells on the sample holder is crucial and should be optimized with the sample preparation procedure in place at a light microscope beforehand. If too many cells are spotted, then the analysis becomes significantly more complex, as X-rays can penetrate multiple layers of cells, and the resulting fluorescence will be reflective of all cellular material in the path of the beam. The identification of individual cells at the beamline becomes also more tedious, curiously, too little cells on the holder will do the same, by increasing the time of search and movements in between the positions of individual cells; a healthy balance is therefore ideal. In addition, the emitted fluorescent X-rays used to identify elemental speciation at each spot penetrate biological material less efficiently as the incident X-ray beam, which might result in a loss of fluorescent signal in thicker samples, affecting either the accuracy of the quantitation or even the correct identification of the elemental content at each spot. Controls, like a comparative quantitative analysis of bulk material in parallel to the imaging analysis, allow one to identify problems of this kind during method development.195,288

Determining elemental distribution maps with XFM

Measurement at the individual beamlines will be dominated by the requirements and specifications of the respective instruments. Samples should be in a state, either by fixation or freezing, to withstand the loading and analysis procedures. Calibration of the X-ray fluorescence emission data is required to allow absolute quantitation of the spatially distributed data. The principle and different strategies are nicely summarized in this review.289 Briefly, calibration is usually done by comparing the intensity of the fluorescence signal emitted from the individual samples to a calibration curve developed from the measurement of standard thin films containing a few elements with known concentrations.290 Matrix matching of the standards and samples is very difficult,289 standards used can therefore be quite different in nature from the biological material analyzed. An in-parallel analysis of the elemental composition of the bulk sample material provided for the spatial analysis by other means, e.g. ICP-MS, is therefore of advantage and can be used at later stages to interrogate the spatial quantitation of the material.195,278 Additionally, single-cell organisms like Chlamydomonas grown in asynchronous conditions in constant light (the most typical way) will contain a mixture of cells at various stages in the cell cycle.291–294 The elemental composition of cells can vary with the growth stage of the cells, and specific observations with respect to the elemental composition might be tied to an individual stage of the cell cycle. Synchrotron beamline time allocation is a crucial limiting factor, especially for quantitative experiments, with respect to the number of cells that can be analyzed at the required spatial resolution. Nevertheless, similar to other microscopy techniques, a mixture of cells from different developmental stages should be selected, as much as possible, to reduce the risk of conclusions based on a biased subset. The size of a cell can inform ‘on which developmental stage’ an individual cell in a batch culture from an asynchronous population currently resides; therefore, selecting cells of various sizes is a straightforward way to avoid oversampling of a specific condition. This can either be done prior to beamline visits, using a light microscope and some coordinate system to record the cell position, or at the beamline. Scans at a lower resolution prior to data collection are routinely used to minimize instrument time by optimizing the focus area of the cell of interest. They also allow for a first assessment of cell size and ensure cell integrity prior to analysis. This selection process, while crucial, can later contribute to the variance in the quantitative data, especially when the data are normalized per cell.

Data analysis of spatially distributed elemental data

Analysis of the acquired emission spectra can be divided into two parts: an accurate quantitation of the data coming from the instrument and a subsequent analysis of the data in between different cells and conditions using normalization and statistics. In the first part, different options and strategies are discussed in detail in an excellent review.221 In brief, quantification of fluorescence data can already be achieved by simple binning of counts within a certain energy window. While this can be sufficiently accurate, peak-fitting to determine the area in the same energy window, especially when combined with correcting for background levels or overlapping peaks, has been demonstrated to be more accurate and should be preferentially used if available. Software tools230,295–297 greatly facilitate all aspects of image analysis, including fitting, ROI analyses, and co-localizations. A detailed step-by-step protocol on how to perform and evaluate XFM data fitting using the MAPS software package can be found here.298

For the subsequent quantitative image analysis, software tools are also of great assistance because they allow the extraction of the quantified information for each pixel and can summarize it both for the whole image globally and for selected regions of interest. Initially, we recommend dividing the image into two regions: the part of the image that is covered by the cell and the surrounding region.195,278 This can be done either manually or algorithm assisted using an abundant element with good signal-to-noise contrast between the cell and the background, e.g. S. Both regions contain valuable information. The background, within the same image, contains the signal recovered from the sample holder and remnants of the sample preparation process, which should be subtracted from the biological material to obtain the total cellular content for each of the identified elements. XFM results are determined as the amount of element/area, summarizing the total amount of material in the column of the beam. For background correction, the amount/area in the background is subtracted from the amount/area in the area covered by the cell before the total cellular amount is calculated from the area covered by the cell. The amounts of elements in the background region should ideally be small compared to the cell image; if there is a substantial amount of elements of interest in the background, then additional washing steps should be added to the sample preparation procedure for the next batch; two consecutive washes of the already spotted cells on the sample holder with clean water were sufficient to have <1% of elements of interest/area in the background region compared to the region covered by the cell. The background-corrected cellular content obtained this way can directly be compared to alternative means of quantitation (e.g. ICP-MS). The quantitative data from this analysis can also be used to evaluate technical aspects, like different approaches to fixation (chemically fixed versus frozen hydrated samples from the same batch), in-between batch variation, or different sample preparation strategies.

Comparisons between different intracellular features are achieved by identifying individual organelles from differential phase contrast images or ptychography reconstruction, or by algorithm-assisted identification of specific elemental signatures within the cells. In Chlamydomonas, acidocalcisomes, cytosolic vacuoles with a role in trace metal sequestration (Fig. 3A), are rich in P and Ca, and potentially also K;184,194,195,276,299 contractile vacuoles, involved in osmoregulation, are rich in K and Cl;254,300,301 pyrenoids, sites of concentrated CO2 fixation in the chloroplast, might have slightly increased S content;196 and large starch shields surrounding the pyrenoid might be visible by the absence of individual elements (Fig. 3B). Other organelles or cellular structures can have a distinguishable elemental composition only in specific nutritional or developmental stages or upon genetic changes, which might then also present an opportunity for selection and further analysis. When algorithm-assisted means are used, it is important to ensure that all the identified regions are completely contained within the cell of interest. Remnants from cell lysis or other cells within the same imaging window might complicate the issue. When intracellular regions are compared, additional normalization or statistical evaluations are necessary to account especially for variance in thickness of the material in the way of the beam. Areas in the center of single cells, where thickness is high compared to peripheral regions, will naturally have a higher amount of element in the 2D projection. Several methods to determine thickness experimentally are discussed previously;221 a more direct way to deal with bias is to utilize a strength of XFM and identify a different elemental distribution from the same cell that shows a uniform distribution, e.g. S (Fig. 3C), and use that for normalization of enrichment analysis.195

Fig. 3.

Fig. 3

Element distribution identifying organelles and spatial normalization using S. (A) Phosphorus and calcium distribution in Chlamydomonas cells, as well as the overlay, showing acidocalcisomes in Zn deficiency. (B) Sulfur distribution in Chlamydomonas cells, potentially showing starch sheets and pyrenoids. (C) Correlation of Fe content as measured by X-ray fluorescence microscopy (x-axis) and ICP-MS/MS (y-axis), normalized either per cell (top) or using S content (bottom), also determined either with ICP-MS or via XFM. Error bars in x and y directions indicate standard deviation in the measurements between at least four individual cells (XFM) or between at least between three independent cultures (ICP-MS/MS). Blue fill indicates frozen hydrated samples; gray fill indicates chemical fixation.

Conclusion

Eukaryotic algae are crucial primary producers in soil, oceanic, and freshwater environments. Their habitats suffer from low trace nutrient bioavailability or heavy metal pollution, sparking research interest into the mechanisms of their metal metabolism. The strategies involved in trace metal distribution can be exploited for biotechnological utilization, either to improve algae growth and consequently their potential for carbon sequestration, for biofortification, or to utilize their mitigation strategies in bioremediation applications. XFM can be a powerful tool to investigate the intracellular elemental distribution of (trace) nutrients in eukaryotic algae quantitatively, allowing to assign function to individual components involved in managing elemental homeostasis or identifying acclimation strategies or useful phenotypes. This Tutorial Review summarizes the state of research involving subcellular elemental distributions determined using XFM with eukaryotic algae as subjects, and provides a workflow of a quantitative elemental distribution analysis for eukaryotic alga.

Contributor Information

Stefan Schmollinger, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA; Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.

Si Chen, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.

Sabeeha S Merchant, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA; Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California,  Berkeley, CA 94720, USA.

Funding

S.S. and S.S.M. are supported by a grant from the U.S. Department of Energy, Office of Science, Basic Energy Sciences (DE-SC0020627) for their work on iron metabolism. S.S.M. work on Cu is supported by a grant from the National Institutes of Health (GM42143). S.C.'s effort is partially supported by a grant from the U.S. Department of Energy (PRJ1009594) and the U.S. Department of Energy, Argonne National Laboratory (DE-AC02-06CH11357).

Conflict of interest

The authors declare no conflicts of interest.

Data availability

The data underlying this review are available in the article and in its online supplementary material.

References

  • 1. Arnon  D. I., Stout  P. R., The essentiality of certain elements in minute quantity for plants with special reference to copper, Plant Physiol., 1939, 14(2), 371–375. 10.1104/pp.14.2.371 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Ramblings  T. F. N., “Chnops,” plus, Sci. News Lett., 1936, 30(801), 110. 10.2307/3912915 [DOI] [Google Scholar]
  • 3. Lippard  S. J., Berg  J. M., Principles of Bioinorganic Chemistry. University Science Books, Mill Valley, 1994. [Google Scholar]
  • 4. Merchant  S. S., Helmann  J. D., Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation, Adv. Microb. Physiol., 2012, 60, 91–210. 10.1016/B978-0-12-398264-3.00002-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Andreini  C., Bertini  I., Cavallaro  G., Holliday  G. L., Thornton  J. M., Metal ions in biological catalysis: from enzyme databases to general principles, J. Biol. Inorg. Chem., 2008, 13(8), 1205–1218. 10.1007/s00775-008-0404-5 [DOI] [PubMed] [Google Scholar]
  • 6. Waldron  K. J., Rutherford  J. C., Ford  D., Robinson  N. J., Metalloproteins and metal sensing, Nature, 2009, 460(7257), 823–830. 10.1038/nature08300 [DOI] [PubMed] [Google Scholar]
  • 7. Wang  Y., Wu  W. H., Potassium transport and signaling in higher plants, Annu. Rev. Plant Biol., 2013, 64(1), 451–476. 10.1146/annurev-arplant-050312-120153 [DOI] [PubMed] [Google Scholar]
  • 8. Leigh  R. A., Jones  R. G. W., A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant-cell, New Phytol., 1984, 97(1), 1–13. 10.1111/j.1469-8137.1984.tb04103.x [DOI] [Google Scholar]
  • 9. Cui  J., Tcherkez  G., Potassium dependency of enzymes in plant primary metabolism, Plant Physiol. Biochem.: PPB, 2021, 166(September), 522–530. 10.1016/j.plaphy.2021.06.017 [DOI] [PubMed] [Google Scholar]
  • 10. Wynn  R. M., Ho  R., Chuang  J. L., Chuang  D. T., Roles of active site and novel K+ ion-binding site residues in human mitochondrial branched-chain alpha-ketoacid decarboxylase/dehydrogenase, J. Biol. Chem., 2001, 276(6), 4168–4174. 10.1074/jbc.M008038200 [DOI] [PubMed] [Google Scholar]
  • 11. Hauer-Jakli  M., Trankner  M., Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: a systematic review and meta-analysis from 70 years of research, Front. Plant Sci., 2019, 10, 766. 10.3389/fpls.2019.00766 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Chen  Z. C., Peng  W. T., Li  J., Liao  H., Functional dissection and transport mechanism of magnesium in plants, Semin. Cell Dev. Biol., 2018, 74(February), 142–152. 10.1016/j.semcdb.2017.08.005 [DOI] [PubMed] [Google Scholar]
  • 13. Klein  D. J., Moore  P. B., Steitz  T. A., The contribution of metal ions to the structural stability of the large ribosomal subunit, RNA, 2004, 10(9), 1366–1379. 10.1261/rna.7390804 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Willstätter  R., Zur kenntniss der zusammensetzung des chlorophylls, Justus Liebigs Ann. Chem., 1906, 350(1-2), 48–82. 10.1002/jlac.19063500103 [DOI] [Google Scholar]
  • 15. Storer  A. C., Cornish-Bowden  A., Concentration of MgATP2- and other ions in solution. Calculation of the true concentrations of species present in mixtures of associating ions, Biochem. J., 1976, 159(1), 1–5. 10.1042/bj1590001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Wheeler  G. L., Brownlee  C., Ca2+ signalling in plants and green algae—changing channels, Trends Plant Sci., 2008, 13(9), 506–514. 10.1016/j.tplants.2008.06.004 [DOI] [PubMed] [Google Scholar]
  • 17. Umena  Y., Kawakami  K., Shen  J.-R., Kamiya  N., Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å, Nature, 2011, 473(7345), 55–60. 10.1038/nature09913 [DOI] [PubMed] [Google Scholar]
  • 18. Weber  A., On the role of calcium in the activity of adenosine 5′-triphosphate hydrolysis by actomyosin, J. Biol. Chem., 1959, 234(10), 2764–2769. 10.1016/S0021-9258(18)69777-7 [DOI] [PubMed] [Google Scholar]
  • 19. Chattopadhyaya  R., Meador  W. E., Means  A. R., Quiocho  F. A., Calmodulin structure refined at 1.7 Å resolution, J. Mol. Biol., 1992, 228(4), 1177–1192. 10.1016/0022-2836(92)90324-D [DOI] [PubMed] [Google Scholar]
  • 20. Lenaeus  M. J., Gamal El-Din  T. M., Ing  C., Ramanadane  K., Pomes  R., Zheng  N., Catterall  W. A, Structures of closed and open states of a voltage-gated sodium channel, Proc. Natl. Acad. Sci. USA, 2017, 114(15), E3051–E3E60. 10.1073/pnas.1700761114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Lai  M. T., Di Cera  E., Shafer  J. A., Kinetic pathway for the slow to fast transition of thrombin. Evidence of linked ligand binding at structurally distinct domains, J. Biol. Chem., 1997, 272(48), 30275–30282. 10.1074/jbc.272.48.30275 [DOI] [PubMed] [Google Scholar]
  • 22. Peracchi  A., Mozzarelli  A., Rossi  G. L., Monovalent cations affect dynamic and functional properties of the tryptophan synthase alpha 2 beta 2 complex, Biochemistry, 1995, 34(29), 9459–9465. 10.1021/bi00029a022 [DOI] [PubMed] [Google Scholar]
  • 23. Murata  T., Yamato  I., Kakinuma  Y., Leslie  A. G., Walker  J. E., Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae, Science, 2005, 308(5722), 654–659. 10.1126/science.1110064 [DOI] [PubMed] [Google Scholar]
  • 24. Brini  F., Masmoudi  K., Ion transporters and abiotic stress tolerance in plants, ISRN Mol. Biol., 2012, 2012, 927436. 10.5402/2012/927436 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Stauber  T., Weinert  S., Jentsch  T. J., Cell Biology and physiology of CLC chloride channels and transporters, Compr. Physiol., 2012, 2(3), 1701–1744 [DOI] [PubMed] [Google Scholar]
  • 26. Feller  G., Lonhienne  T., Deroanne  C., Libioulle  C., Van Beeumen  J., Gerday  C., Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23, J. Biol. Chem., 1992, 267(8), 5217–5221. 10.1016/S0021-9258(18)42754-8 [DOI] [PubMed] [Google Scholar]
  • 27. Arnon  D. I., Whatley  F., Is chloride a coenzyme of photosynthesis?,Science, 1949, 110(2865), 554–556. [DOI] [PubMed] [Google Scholar]
  • 28. Oesterhelt  D., Structure and function of halorhodopsin, Isr. J. Chem., 1995, 35(3-4), 475–494. 10.1002/ijch.199500044 [DOI] [Google Scholar]
  • 29. Salt  D. E., Baxter  I., Lahner  B., Ionomics and the study of the plant ionome, Annu. Rev. Plant Biol., 2008, 59(1), 709–733. 10.1146/annurev.arplant.59.032607.092942 [DOI] [PubMed] [Google Scholar]
  • 30. Page  M. J., Di Cera  E., Role of Na+ and K+ in enzyme function, Physiol. Rev., 2006, 86(4), 1049–1092. 10.1152/physrev.00008.2006 [DOI] [PubMed] [Google Scholar]
  • 31. Britton  K. L., Langridge  S. J., Baker  P. J., Weeradechapon  K., Sedelnikova  S. E., De Lucas  J. R., Rice  D. W., Turner  G., The crystal structure and active site location of isocitrate lyase from the fungus Aspergillus nidulans, Structure, 2000, 8(4), 349–362. 10.1016/S0969-2126(00)00117-9 [DOI] [PubMed] [Google Scholar]
  • 32. Giachetti  E., Pinzauti  G., Bonaccorsi  R., Vanni  P., Isocitrate lyase from Pinus pinea, Eur. J. Biochem., 1988, 172(1), 85–91. 10.1111/j.1432-1033.1988.tb13859.x [DOI] [PubMed] [Google Scholar]
  • 33. Yachandra  V. K., Yano  J., Calcium in the oxygen-evolving complex: structural and mechanistic role determined by X-ray spectroscopy, J. Photochem. Photobiol. B, 2011, 104(1-2), 51–59. 10.1016/j.jphotobiol.2011.02.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Mehri  A., Trace elements in human nutrition (II)—an update, Int. J. Prev. Med., 2020, 11, 2. 10.4103/ijpvm.IJPVM_48_19 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Andresen  E., Peiter  E., Kupper  H., Trace metal metabolism in plants, J. Exp. Bot., 2018, 69(5), 909–954. 10.1093/jxb/erx465 [DOI] [PubMed] [Google Scholar]
  • 36. Morrissey  J., Bowler  C., Iron utilization in marine cyanobacteria and eukaryotic algae, Front. Microbiol., 2012, 3(43), 43. 10.3389/fmicb.2012.00043 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Le Canu  L. R., Gay-Lussac  J. L., Sérullas  G. S.. De l'hematosine, ou matiere colorante du sang. Mme. Huzard, 1830. [Google Scholar]
  • 38. Tagawa  K., Arnon  D. I., Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas, Nature, 1962, 195(4841), 537–543. 10.1038/195537a0 [DOI] [PubMed] [Google Scholar]
  • 39. Merchant  S. S., Schmollinger  S., Strenkert  D., Moseley  J. L., Blaby-Haas  C. E., From economy to luxury: copper homeostasis in Chlamydomonas and other algae, Biochim. Biophys Acta Mol. Cell Res., 2020, 1867(11), 118822. 10.1016/j.bbamcr.2020.118822 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Katoh  S., A new copper protein from Chlorella ellisoidea, Nature, 1960, 186(4724), 533–534. [PubMed] [Google Scholar]
  • 41. Tsukihara  T., Aoyama  H., Yamashita  E., Tomizaki  T., Yamaguchi  H., Shinzawa-Itoh  K., Nakashima  R., Yaono  R., Yoshikawa  S., Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8.5, Science, 1995, 269(5227), 1069–1074. 10.1126/science.7652554 [DOI] [PubMed] [Google Scholar]
  • 42. Beinert  H., Griffiths  D. E., Wharton  D. C., Sands  R. H., Properties of the copper associated with cytochrome oxidase as studied by paramagnetic resonance spectroscopy, J. Biol. Chem., 1962, 237(7), 2337–2346. 10.1016/S0021-9258(19)63443-5 [DOI] [PubMed] [Google Scholar]
  • 43. Stotz  E., Harrer  C. J., King  C. G., A study of “ascorbic acid oxidase” in relation to copper, J. Biol. Chem., 1937, 119(2), 511–522. 10.1016/S0021-9258(18)74396-2 [DOI] [Google Scholar]
  • 44. Hu  X., Wei  X., Ling  J., Chen  J., Cobalt: an essential micronutrient for plant growth?,Front. Plant Sci., 2021, 12(2370), 768523. 10.3389/fpls.2021.768523 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Smith  E. L., Presence of cobalt in the anti-pernicious anæmia factor, Nature, 1948, 162(4108), 144–145. 10.1038/162144b0 [DOI] [PubMed] [Google Scholar]
  • 46. Rickes  E. L., Brink  N. G., Koniuszy  F. R., Wood  T. R., Folkers  K., Vitamin-B12, a cobalt complex, Science, 1948, 108(2797), 134. 10.1126/science.108.2797.134 [DOI] [PubMed] [Google Scholar]
  • 47. Hodgkin  D. C., Kamper  J., Mackay  M., Pickworth  J., Trueblood  K. N., White  J. G., Structure of vitamin B12, Nature, 1956, 178(4524), 64–66. 10.1038/178064a0 [DOI] [PubMed] [Google Scholar]
  • 48. Fabiano  C. C., Tezotto  T., Favarin  J. L., Polacco  J. C., Mazzafera  P., Essentiality of nickel in plants: a role in plant stresses, Front. Plant Sci.  2015, 6, 754. 10.3389/fpls.2015.00754 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Alfano  M., Cavazza  C., Structure, function, and biosynthesis of nickel-dependent enzymes, Protein Sci., 2020, 29(5), 1071–1089. 10.1002/pro.3836 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Dixon  N. E., Gazzola  C., Blakeley  R. L., Zerner  B., Jack bean urease (EC 3.5.1.5). Metalloenzyme. Simple biological role for nickel, J. Am. Chem. Soc., 1975, 97(14), 4131–4133. 10.1021/ja00847a045 [DOI] [PubMed] [Google Scholar]
  • 51. Volbeda  A., Charon  M.-H., Piras  C., Hatchikian  E. C., Frey  M., Fontecilla-Camps  J. C., Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas, Nature, 1995, 373(6515), 580–587. 10.1038/373580a0 [DOI] [PubMed] [Google Scholar]
  • 52. Alejandro  S., Holler  S., Meier  B., Peiter  E., Manganese in plants: from acquisition to subcellular allocation, Front. Plant Sci., 2020, 11, 300. 10.3389/fpls.2020.00300 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Zouni  A., Witt  H.-T., Kern  J., Fromme  P., Krauss  N., Saenger  W., Orth  P., Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution, Nature, 2001, 409(6821), 739–743. 10.1038/35055589 [DOI] [PubMed] [Google Scholar]
  • 54. Mildvan  A. S., Scrutton  M. C., Utter  M. F., Pyruvate carboxylase: VII. A possible role for tightly bound manganese, J. Biol. Chem., 1966, 241(15), 3488–3498. 10.1016/S0021-9258(18)99859-5 [DOI] [PubMed] [Google Scholar]
  • 55. Scrutton  M. C., Utter  M. F., Mildvan  A. S., Pyruvate carboxylase: VI. The presence of tightly bound manganese, J. Biol. Chem., 1966, 241(15), 3480–3487. 10.1016/S0021-9258(18)99858-3 [DOI] [PubMed] [Google Scholar]
  • 56. McCall  K. A., Huang  C., Fierke  C. A., Function and mechanism of zinc metalloenzymes, J. Nutr., 2000, 130(5S  Suppl), 1437S–1446S. 10.1093/jn/130.5.1437S [DOI] [PubMed] [Google Scholar]
  • 57. Keilin  D., Mann  T., Carbonic anhydrase. Purification and nature of the enzyme, Biochem. J., 1940, 34(8-9), 1163–1176. 10.1042/bj0341163 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Liljas  A., Kannan  K. K., Bergstén  P. C., Waara  I., Fridborg  K., Strandberg  B., Carlbom  U., Järup  L., Lövgren  S., Petef  M., Crystal structure of human carbonic anhydrase C, Nat. New Biol., 1972, 235(57), 131–137. 10.1038/newbio235131a0 [DOI] [PubMed] [Google Scholar]
  • 59. Cassandri  M., Smirnov  A., Novelli  F., Pitolli  C., Agostini  M., Malewicz  M., Melino  G., Raschellà  G., Zinc-finger proteins in health and disease, Cell Death Discov., 2017, 3(1), 17071. 10.1038/cddiscovery.2017.71 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Hanas  J. S., Hazuda  D. J., Bogenhagen  D. F., Wu  F. Y., Wu  C. W., Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene, J. Biol. Chem., 1983, 258(23), 14120–14125. 10.1016/S0021-9258(17)43831-2 [DOI] [PubMed] [Google Scholar]
  • 61. Fu  L. H., Wang  X. F., Eyal  Y., She  Y. M., Donald  L. J., Standing  K. G., Ben-Hayyim  G., A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii gluththione peroxidase, J. Biol. Chem., 2002, 277(29), 25983–25991. 10.1074/jbc.M202912200 [DOI] [PubMed] [Google Scholar]
  • 62. Labunskyy  V. M., Hatfield  D. L., Gladyshev  V. N., Selenoproteins: molecular pathways and physiological roles, Physiol. Rev., 2014, 94(3), 739–777. 10.1152/physrev.00039.2013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Flohe  L., Günzler  W. A., Schock  H. H., Glutathione peroxidase: a selenoenzyme, FEBS Lett., 1973, 32(1), 132–134. 10.1016/0014-5793(73)80755-0 [DOI] [PubMed] [Google Scholar]
  • 64. Cone  J. E., Del Río  R. M., Davis  J. N., Stadtman  T. C., Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety, Proc. Natl. Acad. Sci., 1976, 73(8), 2659–2663. 10.1073/pnas.73.8.2659 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Zinoni  F., Birkmann  A., Stadtman  T. C., Böck  A., Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli, Proc. Natl. Acad. Sci., 1986, 83(13), 4650–4654. 10.1073/pnas.83.13.4650 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Chambers  I., Frampton  J., Goldfarb  P., Affara  N., McBain  W., Harrison  P. R., The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ‘termination’ codon, TGA, EMBO J., 1986, 5(6), 1221–1227. 10.1002/j.1460-2075.1986.tb04350.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Rehder  D., The role of vanadium in biology, Metallomics, 2015, 7(5), 730–742. 10.1039/c4mt00304g [DOI] [PubMed] [Google Scholar]
  • 68. Weyand  M., Hecht  H. J., Kieß  M., Liaud  M. F., Vilter  H., Schomburg  D., X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 Å resolution, J. Mol. Biol., 1999, 293(3), 595–611. 10.1006/jmbi.1999.3179 [DOI] [PubMed] [Google Scholar]
  • 69. Vilter  H., Peroxidases from phaeophyceae: a vanadium(V)-dependent peroxidase from Ascophyllum nodosum, Phytochemistry, 1984, 23(7), 1387–1390. 10.1016/S0031-9422(00)80471-9 [DOI] [Google Scholar]
  • 70. Robson  R. L., Eady  R. R., Richardson  T. H., Miller  R. W., Hawkins  M., Postgate  J. R., The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme, Nature, 1986, 322(6077), 388–390. 10.1038/322388a0 [DOI] [Google Scholar]
  • 71. Crockford  S. J., Evolutionary roots of iodine and thyroid hormones in cell–cell signaling, Integr. Comp. Biol., 2009, 49(2), 155–166. 10.1093/icb/icp053 [DOI] [PubMed] [Google Scholar]
  • 72. Küpper  F. C., Carrano  C. J., Key aspects of the iodine metabolism in brown algae: a brief critical review, Metallomics, 2019, 11(4), 756–764. 10.1039/c8mt00327k [DOI] [PubMed] [Google Scholar]
  • 73. Küpper  F. C., Carpenter  L. J., McFiggans  G. B., Palmer  C. J., Waite  T. J., Boneberg  E.-M., Woitsch  S., Weiller  M., Abela  R., Grolimund  D., Potin  P., Butler  A., Luther  G. W., Kroneck  P. M. H., Meyer-Klaucke  W., Feiters  M. C., Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry, Proc. Natl. Acad. Sci., 2008, 105(19), 6954–6958. 10.1073/pnas.0709959105 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Cosse  A., Potin  P., Leblanc  C., Patterns of gene expression induced by oligoguluronates reveal conserved and environment-specific molecular defense responses in the brown alga Laminaria digitata, New Phytol., 2009, 182(1), 239–250. 10.1111/j.1469-8137.2008.02745.x [DOI] [PubMed] [Google Scholar]
  • 75. Mendel  R. R., Kruse  T., Cell biology of molybdenum in plants and humans, Biochim. Biophys. Acta, 2012, 1823(9), 1568–1579. 10.1016/j.bbamcr.2012.02.007 [DOI] [PubMed] [Google Scholar]
  • 76. Zhang  Y., Gladyshev  V. N., Molybdoproteomes and evolution of molybdenum utilization, J. Mol. Biol., 2008, 379(4), 881–899. 10.1016/j.jmb.2008.03.051 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Bortels  H., Molybdän als katalysator bei der biologischen stickstoffbindung, Arch. Mikrobiol., 1930, 1(1), 333–342. 10.1007/BF00510471 [DOI] [Google Scholar]
  • 78. Zamble  D. B., Nickel in biology, Metallomics, 2015, 7(4), 588–589. 10.1039/c5mt90013a [DOI] [PubMed] [Google Scholar]
  • 79. Schwarz  G., Mendel  R. R., Ribbe  M. W., Molybdenum cofactors, enzymes and pathways, Nature, 2009, 460(7257), 839–847. 10.1038/nature08302 [DOI] [PubMed] [Google Scholar]
  • 80. Fenton  H., On a new reaction of tartaric acid, Chem News, 1876, 33(190), 190. [Google Scholar]
  • 81. Cunningham  R. P., Asahara  H., Bank  J. F., Scholes  C. P., Salerno  J. C., Surerus  K., Munck  E., McCracken  J., Peisach  J., Emptage  M. H., Endonuclease III is an iron-sulfur protein, Biochemistry, 1989, 28(10), 4450–4455. 10.1021/bi00436a049 [DOI] [PubMed] [Google Scholar]
  • 82. Kendrew  J. C., Dickerson  R. E., Strandberg  B. E., Hart  R. G., Davies  D. R., Phillips  D. C., Shore  V. C., Structure of myoglobin: a three-dimensional fourier synthesis at 2 Å. Resolution, Nature, 1960, 185(4711), 422–427. 10.1038/185422a0 [DOI] [PubMed] [Google Scholar]
  • 83. Roach  P. L., Clifton  I. J., Hensgens  C. M. H., Shibata  N., Schofield  C. J., Hajdu  J., Baldwin  J. E., Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation, Nature, 1997, 387(6635), 827–830. 10.1038/42990 [DOI] [PubMed] [Google Scholar]
  • 84. Netz  D. J., Stith  C. M., Stümpfig  M., Köpf  G., Vogel  D., Genau  H. M., Stodola  J. L., Lill  R., Burgers  P. M., Pierik  A. J., Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes, Nat. Chem. Biol., 2011, 8(1), 125–132. 10.1038/nchembio.721 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Robbins  A. H., Stout  C. D., The structure of aconitase, Proteins Struct. Funct. Bioinf., 1989, 5(4), 289–312. 10.1002/prot.340050406 [DOI] [PubMed] [Google Scholar]
  • 86. Vainshtein  B. K., Melik-Adamyan  W. R., Barynin  V. V., Vagin  A. A., Grebenko  A. I., Three-dimensional structure of the enzyme catalase, Nature, 1981, 293(5831), 411–412. 10.1038/293411a0 [DOI] [PubMed] [Google Scholar]
  • 87. Iwata  S., Ostermeier  C., Ludwig  B., Michel  H., Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature, 1995, 376(6542), 660–669. 10.1038/376660a0 [DOI] [PubMed] [Google Scholar]
  • 88. Tsukihara  T., Aoyama  H., Yamashita  E., Tomizaki  T., Yamaguchi  H., Shinzawa-Itoh  K., Nakashima  R., Yaono  R., Yoshikawa  S., Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å, Science, 1995, 269(5227), 1069–1074. 10.1126/science.7652554 [DOI] [PubMed] [Google Scholar]
  • 89. Cuff  M. E., Miller  K. I., van Holde  K. E., Hendrickson  W. A., Crystal structure of a functional unit from Octopus hemocyanin, J. Mol. Biol., 1998, 278(4), 855–870. 10.1006/jmbi.1998.1647 [DOI] [PubMed] [Google Scholar]
  • 90. Boulanger  M. J., Murphy  M. E. P., Alternate substrate binding modes to two mutant (D98N and H255N) forms of nitrite reductase from Alcaligenes faecalis S-6: structural model of a transient catalytic intermediate, Biochemistry, 2001, 40(31), 9132–9141. 10.1021/bi0107400 [DOI] [PubMed] [Google Scholar]
  • 91. Tainer  J. A., Getzoff  E. D., Richardson  J. S., Richardson  D. C., Structure and mechanism of copper, zinc superoxide dismutase, Nature, 1983, 306(5940), 284–287. 10.1038/306284a0 [DOI] [PubMed] [Google Scholar]
  • 92. Dzul  S., Stemmler  T. L., Penner-Hahn  J. E., Manganese proteins with mono- and dinuclear metal sites, In: Scott  RA (ed.), Encyclopedia of Inorganic and Bioinorganic Chemistry, Wiley, Hoboken, NJ, 2015, pp. 1–11. [Google Scholar]
  • 93. Borgstahl  G. E. O., Parge  H. E., Hickey  M. J., Beyer  W. F.  Jr, Hallewell  R. A., Tainer  J. A, The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles, Cell, 1992, 71(1), 107–118. 10.1016/0092-8674(92)90270-M [DOI] [PubMed] [Google Scholar]
  • 94. Cox  N., Ogata  H., Stolle  P., Reijerse  E., Auling  G., Lubitz  W., A tyrosyl−dimanganese coupled spin system is the native metalloradical cofactor of the R2F subunit of the ribonucleotide reductase of Corynebacterium ammoniagenes, J. Am. Chem. Soc., 2010, 132(32), 11197–11213. 10.1021/ja1036995 [DOI] [PubMed] [Google Scholar]
  • 95. Jedrzejas  M. J., Chander  M., Setlow  P., Krishnasamy  G., Structure and mechanism of action of a novel phosphoglycerate mutase from Bacillus stearothermophilus, EMBO J., 2000, 19(7), 1419–1431. 10.1093/emboj/19.7.1419 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Yruela  I., Transition metals in plant photosynthesis, Metallomics, 2013, 5(9), 1090–1109. 10.1039/c3mt00086a [DOI] [PubMed] [Google Scholar]
  • 97. Przybyla-Toscano  J., Boussardon  C., Law  S. R., Rouhier  N., Keech  O., Gene atlas of iron-containing proteins in Arabidopsis thaliana, Plant J., 2021, 106(1), 258–274. 10.1111/tpj.15154 [DOI] [PubMed] [Google Scholar]
  • 98. Hausinger  R. P., Metallocenter assembly in nickel-containing enzymes, JBIC J. Biol. Inorg. Chem., 1997, 2(3), 279–286. 10.1007/s007750050133 [DOI] [Google Scholar]
  • 99. Kobayashi  M., Shimizu  S., Cobalt proteins, Eur. J. Biochem., 1999, 261(1), 1–9. 10.1046/j.1432-1327.1999.00186.x [DOI] [PubMed] [Google Scholar]
  • 100. Drennan  C. L., Huang  S., Drummond  J. T., Matthews  R. G., Ludwig  M. L., How a protein binds B12: a 3.0 Å X-ray structure of B12-binding domains of methionine synthase, Science, 1994, 266(5191), 1669–1674. 10.1126/science.7992050 [DOI] [PubMed] [Google Scholar]
  • 101. Hille  R., Nishino  T., Bittner  F., Molybdenum enzymes in higher organisms, Coord. Chem. Rev., 2011, 255(9-10), 1179–1205. 10.1016/j.ccr.2010.11.034 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Enroth  C., Eger  B. T., Okamoto  K., Nishino  T., Nishino  T., Pai  E. F., Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion, Proc. Natl. Acad. Sci., 2000, 97(20), 10723–10728. 10.1073/pnas.97.20.10723 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103. Kisker  C., Schindelin  H., Pacheco  A., Wehbi  W. A., Garrett  R. M., Rajagopalan  K. V., Enemark  J. H., Rees  D. C., Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase, Cell, 1997, 91(7), 973–983. 10.1016/S0092-8674(00)80488-2 [DOI] [PubMed] [Google Scholar]
  • 104. Oteiza  P. I., Zinc and the modulation of redox homeostasis, Free Radic. Biol. Med., 2012, 53(9), 1748–1759. 10.1016/j.freeradbiomed.2012.08.568 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Sharma  A., Patni  B., Shankhdhar  D., Shankhdhar  S. C., Zinc—an indispensable micronutrient, Physiol. Mol. Biol. Plants, 2013, 19(1), 11–20. 10.1007/s12298-012-0139-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Palmer  C. M., Guerinot  M. L., Facing the challenges of Cu, Fe and Zn homeostasis in plants, Nat. Chem. Biol., 2009, 5(5), 333–340. 10.1038/nchembio.166 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107. Gupta  M., Gupta  S., An overview of selenium uptake, metabolism, and toxicity in plants, Front. Plant Sci., 2016, 7(2074), 2074. 10.3389/fpls.2016.02074 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Reich  H. J., Hondal  R. J., Why nature chose selenium, ACS Chem. Biol., 2016, 11(4), 821–841. 10.1021/acschembio.6b00031 [DOI] [PubMed] [Google Scholar]
  • 109. Cone  J. E., Del Río  R. M., Davis  J. N., Stadtman  T. C., Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety, Proc. Natl. Acad. Sci. USA, 1976, 73(8), 2659–2663. 10.1073/pnas.73.8.2659 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Yurkova  N., Saveleva  N., Lyalikova  N., Oxidation of molecular-hydrogen and carbon-monoxide by facultatively chemolithotrophic vanadate-reducing bacteria, Microbiology, 1993, 62(4), 367–370. [Google Scholar]
  • 111. Carpentier  W., Sandra  K., De Smet  I., Brigé  A., De Smet  L., Van Beeumen  J., Microbial reduction and precipitation of vanadium by Shewanella oneidensis, Appl. Environ. Microbiol., 2003, 69(6), 3636–3639. 10.1128/aem.69.6.3636-3639.2003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Uluisik  I., Karakaya  H. C., Koc  A., The importance of boron in biological systems, J. Trace Elem. Med. Biol., 2018, 45, 156–162. 10.1016/j.jtemb.2017.10.008 [DOI] [PubMed] [Google Scholar]
  • 113. Hutter  R., Keller-Schierlein  W., Knusel  F., Prelog  V., Rodgers  G. C.  Jr, Suter  P., Vogel  G., Voser  W., Zahner  H., The metabolic products of microorganisms. Boromycin, Helv. Chim. Acta, 1967, 50(6), 1533–1539. 10.1002/hlca.19670500612 [DOI] [PubMed] [Google Scholar]
  • 114. Kobayashi  M., Matoh  T., Azuma  J., Two chains of rhamnogalacturonan II are cross-linked by borate–diol ester bonds in higher plant cell walls, Plant Physiol., 1996, 110(3), 1017–1020. 10.1104/pp.110.3.1017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115. Bennett  A., Rowe  R. I., Soch  N., Eckhert  C. D., Boron stimulates yeast (Saccharomyces cerevisiae) growth, J. Nutr., 1999, 129(12), 2236–2238 [DOI] [PubMed] [Google Scholar]
  • 116. Lewis  D. H., Boron: the essential element for vascular plants that never was, New Phytol., 2019, 221(4), 1685–1690. 10.1111/nph.15519 [DOI] [PubMed] [Google Scholar]
  • 117. Nozawa  A., Takano  J., Kobayashi  M., Von Wirén  N., Fujiwara  T., Roles of BOR1, DUR3, and FPS1 in boron transport and tolerance in Saccharomyces cerevisiae, FEMS Microbiol. Lett., 2006, 262(2), 216–222. 10.1111/j.1574-6968.2006.00395.x [DOI] [PubMed] [Google Scholar]
  • 118. Ma  J. F., Yamaji  N., A cooperative system of silicon transport in plants, Trends Plant Sci., 2015, 20(7), 435–442. 10.1016/j.tplants.2015.04.007 [DOI] [PubMed] [Google Scholar]
  • 119. Hildebrand  M., Volcani  B. E., Gassmann  W., Schroeder  J. I., A gene family of silicon transporters, Nature, 1997, 385(6618), 688–689. 10.1038/385688b0 [DOI] [PubMed] [Google Scholar]
  • 120. Rogall  E., Über den Feinbau der Kieselmembran der Diatomeen, Planta, 1939, 29(2), 279–291. [Google Scholar]
  • 121. Pančić  M., Torres  R. R., Almeda  R., Kiørboe  T., Silicified cell walls as a defensive trait in diatoms, Proc. R. Soc. B: Biolog. Sci., 2019, 286(1901), 20190184. 10.1098/rspb.2019.0184 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122. Dembitsky  V. M., Levitsky  D. O., Arsenolipids, Prog. Lipid Res., 2004, 43(5), 403–448. 10.1016/j.plipres.2004.07.001 [DOI] [PubMed] [Google Scholar]
  • 123. Lunde  G., Analysis of trace elements in seaweed, J. Sci. Food Agric., 1970, 21(8), 416–418. 10.1002/jsfa.2740210806 [DOI] [PubMed] [Google Scholar]
  • 124. Pétursdóttir  Á. H., Fletcher  K., Gunnlaugsdóttir  H., Krupp  E., Küpper  F. C., Feldmann  J., Environmental effects on arsenosugars and arsenolipids in Ectocarpus (Phaeophyta), Environ. Chem., 2016, 13(1), 21–33. 10.1071/en14229 [DOI] [Google Scholar]
  • 125. Martinez  J. S., Carroll  G. L., Tschirret-Guth  R. A., Altenhoff  G., Little  R. D., Butler  A., On the regiospecificity of vanadium bromoperoxidase, J. Am. Chem. Soc., 2001, 123(14), 3289–3294. 10.1021/ja004176c [DOI] [PubMed] [Google Scholar]
  • 126. Gribble  G. W., The diversity of naturally occurring organobromine compounds, Chem. Soc. Rev., 1999, 28(5), 335–346. 10.1039/a900201d [DOI] [Google Scholar]
  • 127. Duan  X. J., Li  X. M., Wang  B. G., Highly brominated mono- and bis-phenols from the marine red alga Symphyocladia latiuscula with radical-scavenging activity, J. Nat. Prod., 2007, 70(7), 1210–1213. 10.1021/np070061b [DOI] [PubMed] [Google Scholar]
  • 128. Hughes  N. P., Perry  C. C., Anderson  O. R., Williams  R. J. P., Biological minerals formed from strontium and barium sulphates. III. The morphology and crystallography of strontium sulphate crystals from the colonial radiolarian, Sphaerozoum punctatum, Proc. R. Soc. Lond. B: Biolog. Sci., 1997, 238(1292), 223–233. 10.1098/rspb.1989.0078 [DOI] [Google Scholar]
  • 129. Decelle  J., Martin  P., Paborstava  K., Pond  D. W., Tarling  G., Mahé  F., de Vargas  C., Lampitt  R., Diversity  N. F., Ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans, PLoS One, 2013, 8(1), e53598. 10.1371/journal.pone.0053598 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130. Brisbin  M. M., Brunner  O. D., Grossmann  M. M., Mitarai  S., Paired high-throughput, in situ imaging and high-throughput sequencing illuminate acantharian abundance and vertical distribution, Limnol. Oceanogr., 2020, 65(12), 2953–2965. 10.1002/lno.11567 [DOI] [Google Scholar]
  • 131. Price  N. M., Morel  F. M. M., Cadmium and cobalt substitution for zinc in a marine diatom, Nature, 1990, 344(6267), 658–660. 10.1038/344658a0 [DOI] [Google Scholar]
  • 132. Alterio  V., Langella  E., Viparelli  F., Vullo  D., Ascione  G., Dathan  N. A., Morel  F. M., Supuran  C. T., De Simone  G., Monti  S. M., Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom Thalassiosira weissflogii, Biochimie, 2012, 94(5), 1232–1241. 10.1016/j.biochi.2012.02.013 [DOI] [PubMed] [Google Scholar]
  • 133. Xu  Y., Feng  L., Jeffrey  P. D., Shi  Y., Morel  F. M. M., Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms, Nature, 2008, 452(7183), 56–61. 10.1038/nature06636 [DOI] [PubMed] [Google Scholar]
  • 134. Park  H., Song  B., Morel  F. M. M., Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters, Environ. Microbiol., 2007, 9(2), 403–413. 10.1111/j.1462-2920.2006.01151.x [DOI] [PubMed] [Google Scholar]
  • 135. Hu  Y., Faham  S., Roy  R., Adams  M. W., Rees  D. C., Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: the 1.85 A resolution crystal structure and its mechanistic implications, J. Mol. Biol., 1999, 286(3), 899–914. 10.1006/jmbi.1998.2488 [DOI] [PubMed] [Google Scholar]
  • 136. Maia  L. B., Moura  I., Moura  J. J. G., Molybdenum and tungsten-containing enzymes: an overview, In: Hille  R, Schulzke  C, Kirk  M (eds), Molybdenum and Tungsten Enzymes: Biochemistry, The Royal Society of Chemistry, 2017, ch. 1, pp. 1–80. [Google Scholar]
  • 137. Yamamoto  I., Saiki  T., Liu  S. M., Ljungdahl  L. G., Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein, J. Biol. Chem., 1983, 258(3), 1826–1832. 10.1016/S0021-9258(18)33062-X [DOI] [PubMed] [Google Scholar]
  • 138. Johnson  M. K., Rees  D. C., Adams  M. W. W., Tungstoenzymes, Chem. Rev., 1996, 96(7), 2817–2840. 10.1021/cr950063d [DOI] [PubMed] [Google Scholar]
  • 139. Rosner  B. M., Schink  B., Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein, J. Bacteriol., 1995, 177(20), 5767–5772. 10.1128/jb.177.20.5767-5772.1995 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140. Lyu  S., Wei  X., Chen  J., Wang  C., Wang  X., Pan  D., Titanium as a beneficial element for crop production, Front. Plant Sci., 2017, 8(597), 597. 10.3389/fpls.2017.00597 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141. Grégoire  D. S., Poulain  A. J., A physiological role for HgII during phototrophic growth, Nat. Geosci., 2016, 9(2), 121–125. 10.1038/ngeo2629 [DOI] [Google Scholar]
  • 142. Barkay  T., Wagner-Döbler  I., Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment, Adv. Appl. Microbiol., 2005, 57, 1–52. [DOI] [PubMed] [Google Scholar]
  • 143. Ben-Bassat  D., Mayer  A. M., Volatilization of mercury by algae, Physiol. Plant., 1975, 33(2), 128–132. 10.1111/j.1399-3054.1975.tb03779.x [DOI] [Google Scholar]
  • 144. Martinez-Gomez  N. C., Vu  H. N., Skovran  E., Lanthanide chemistry: from coordination in chemical complexes shaping our technology to coordination in enzymes shaping bacterial metabolism, Inorg. Chem., 2016, 55(20), 10083–10089. 10.1021/acs.inorgchem.6b00919 [DOI] [PubMed] [Google Scholar]
  • 145. Cotruvo  J. A.  Jr, The chemistry of lanthanides in biology: recent discoveries, emerging principles, and technological applications, ACS Cent. Sci., 2019, 5(9), 1496–1506. 10.1021/acscentsci.9b00642 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146. Hibi  Y., Asai  K., Arafuka  H., Hamajima  M., Iwama  T., Kawai  K., Molecular structure of La3+-induced methanol dehydrogenase-like protein in Methylobacterium radiotolerans, J. Biosci. Bioeng., 2011, 111(5), 547–549. 10.1016/j.jbiosc.2010.12.017 [DOI] [PubMed] [Google Scholar]
  • 147. Cotruvo  J. A.  Jr., Featherston  E. R., Mattocks  J. A., Ho  J. V., Laremore  T. N., Lanmodulin: a highly selective lanthanide-binding protein from a lanthanide-utilizing bacterium, J. Am. Chem. Soc., 2018, 140(44), 15056–15061. 10.1021/jacs.8b09842 [DOI] [PubMed] [Google Scholar]
  • 148. Bogart  J. A., Lewis  A. J., Schelter  E. J., DFT study of the active site of the XoxF-type natural, cerium-dependent methanol dehydrogenase enzyme, Chemistry, 2015, 21(4), 1743–1748. 10.1002/chem.201405159 [DOI] [PubMed] [Google Scholar]
  • 149. Fitriyanto  N. A., Fushimi  M., Matsunaga  M., Pertiwiningrum  A., Iwama  T., Kawai  K., Molecular structure and gene analysis of Ce3+-induced methanol dehydrogenase of Bradyrhizobium sp. MAFF211645, J. Biosci. Bioeng., 2011, 111(6), 613–617. 10.1016/j.jbiosc.2011.01.015 [DOI] [PubMed] [Google Scholar]
  • 150. Pol  A., Barends  T. R. M., Dietl  A., Khadem  A. F., Eygensteyn  J., Jetten  M. S. M., Op den Camp HJM. Rare earth metals are essential for methanotrophic life in volcanic mudpots, Environ. Microbiol., 2014, 16(1), 255–264. 10.1111/1462-2920.12249 [DOI] [PubMed] [Google Scholar]
  • 151. Mattocks  J. A., Ho  J. V., Cotruvo  J. A.  Jr, Selective  A., Protein-based fluorescent sensor with picomolar affinity for rare earth elements, J. Am. Chem. Soc., 2019, 141(7), 2857–2861. 10.1021/jacs.8b12155 [DOI] [PubMed] [Google Scholar]
  • 152. Schmitz Rob  A., Picone  N., Singer  H., Dietl  A., Seifert  K.-A., Pol  A., Jetten Mike  S. M., Barends Thomas  R. M., Daumann Lena  J., Op den Camp  H. J. M., Neodymium as metal cofactor for biological methanol oxidation: structure and kinetics of an XoxF1-type methanol dehydrogenase, mBio, 2021, 12(5), e01708–e01721. 10.1128/mBio.01708-21 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153. Finney  L. A., O'Halloran  T. V., Transition metal speciation in the cell: insights from the chemistry of metal ion receptors, Science, 2003, 300(5621), 931–936. 10.1126/science.1085049 [DOI] [PubMed] [Google Scholar]
  • 154. Imlay  J. A., The mismetallation of enzymes during oxidative stress, J. Biol. Chem., 2014, 289(41), 28121–28128. 10.1074/jbc.R114.588814 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155. Cyert  M. S., Philpott  C. C., Regulation of cation balance in Saccharomyces cerevisiae, Genetics, 2013, 193(3), 677–713. 10.1534/genetics.112.147207 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156. Blaby-Haas  C. E., Merchant  S. S., Regulating cellular trace metal economy in algae, Curr. Opin. Plant Biol., 2017, 39, 88–96. 10.1016/j.pbi.2017.06.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157. Dudev  T., Lim  C., Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins, Chem. Rev., 2014, 114(1), 538–556. 10.1021/cr4004665 [DOI] [PubMed] [Google Scholar]
  • 158. Foster  A. W., Osman  D., Robinson  N. J., Metal preferences and metallation, J. Biol. Chem., 2014, 289(41), 28095–28103. 10.1074/jbc.R114.588145 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159. Cotruvo  J. A.  Jr, Stubbe  J., Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study, Metallomics, 2012, 4(10), 1020–1036. 10.1039/c2mt20142a [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160. Imlay  J. A., Cellular defenses against superoxide and hydrogen peroxide, Annu. Rev. Biochem., 2008, 77, 755–776. 10.1146/annurev.biochem.77.061606.161055 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161. Tottey  S., Waldron  K. J., Firbank  S. J., Reale  B., Bessant  C., Sato  K., Cheek  T. R., Gray  J., Banfield  M. J., Dennison  C., Robinson  N. J., Protein-folding location can regulate manganese-binding versus copper- or zinc-binding, Nature, 2008, 455(7216), 1138–1142. 10.1038/nature07340 [DOI] [PubMed] [Google Scholar]
  • 162. Robinson  N. J., Winge  D. R., Copper metallochaperones, Annu. Rev. Biochem., 2010, 79(1), 537–562. 10.1146/annurev-biochem-030409-143539 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163. Capdevila  D. A., Edmonds  K. A., Giedroc  D. P., Metallochaperones and metalloregulation in bacteria, Essays Biochem., 2017, 61(2), 177–200. 10.1042/EBC20160076 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164. Dupont  C. L., Butcher  A., Valas  R. E., Bourne  P. E., Caetano-Anolles  G., History of biological metal utilization inferred through phylogenomic analysis of protein structures, Proc. Natl. Acad. Sci. USA, 2010, 107(23), 10567–10572. 10.1073/pnas.0912491107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165. Guo  W. L., Nazim  H., Liang  Z. S., Yang  D. F., Magnesium deficiency in plants: an urgent problem, Crop J., 2016, 4(2), 83–91. 10.1016/j.cj.2015.11.003 [DOI] [Google Scholar]
  • 166. Chen  Z. C., Peng  W. T., Li  J., Liao  H., Functional dissection and transport mechanism of magnesium in plants, Semin. Cell Dev. Biol., 2018, 74, 142–152. 10.1016/j.semcdb.2017.08.005 [DOI] [PubMed] [Google Scholar]
  • 167. Terry  N., Low  G., Leaf chlorophyll content and its relation to the intracellular-localization of iron, J. Plant Nutr., 1982, 5(4-7), 301–310. 10.1080/01904168209362959 [DOI] [Google Scholar]
  • 168. López-Millán  A. F., Duy  D., Philippar  K., Chloroplast iron transport proteins—function and impact on plant physiology, Front. Plant Sci., 2016, 7, 178. 10.3389/fpls.2016.00178 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169. Merchant  S., Bogorad  L., Regulation by copper of the expression of plastocyanin and cytochrome c552 in Chlamydomonas reinhardi, Mol. Cell. Biol., 1986, 6(2), 462–469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170. Lindskog  S., Structure and mechanism of carbonic anhydrase, Pharmacol. Ther., 1997, 74(1), 1–20. 10.1016/S0163-7258(96)00198-2 [DOI] [PubMed] [Google Scholar]
  • 171. Aigner  H., Wilson  R. H., Bracher  A., Calisse  L., Bhat  J. Y., Hartl  F. U., Hayer-Hartl  M., Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2, Science, 2017, 358(6368), 1272–1278. 10.1126/science.aap9221 [DOI] [PubMed] [Google Scholar]
  • 172. Staiger  D., Chemical strategies for iron acquisition in plants, Angew. Chem. Int. Ed Engl., 2002, 41(13), 2259–2264. [DOI] [PubMed] [Google Scholar]
  • 173. Imlay  J. A., Iron-sulphur clusters and the problem with oxygen, Mol. Microbiol., 2006, 59(4), 1073–1082. 10.1111/j.1365-2958.2006.05028.x [DOI] [PubMed] [Google Scholar]
  • 174. Morel  F. M. M., Hudson  R. J. M., Price  N. M., Limitation of productivity by trace metals in the sea, Limnol. Oceanogr., 1991, 36(8), 1742–1755. 10.4319/lo.1991.36.8.1742 [DOI] [Google Scholar]
  • 175. Kosman  D. J., Molecular mechanisms of iron uptake in fungi, Mol. Microbiol., 2003, 47(5), 1185–1197. 10.1046/j.1365-2958.2003.03368.x [DOI] [PubMed] [Google Scholar]
  • 176. Peers  G., Price  N. M., Copper-containing plastocyanin used for electron transport by an oceanic diatom, Nature, 2006, 441(7091), 341–344. 10.1038/nature04630 [DOI] [PubMed] [Google Scholar]
  • 177. Kropat  J., Gallaher  S. D., Urzica  E. I., Nakamoto  S. S., Strenkert  D., Tottey  S., Mason  A. Z., Merchant  S. S., Copper economy in Chlamydomonas: prioritized allocation and reallocation of copper to respiration vs. photosynthesis, Proc. Natl. Acad. Sci. USA, 2015, 112(9), 2644–2651. 10.1073/pnas.1422492112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178. Masse  E., Gottesman  S., A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli, Proc. Natl. Acad. Sci. USA, 2002, 99(7), 4620–4625. 10.1073/pnas.032066599 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179. Puig  S., Askeland  E., Thiele  D. J., Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation, Cell, 2005, 120(1), 99–110. 10.1016/j.cell.2004.11.032 [DOI] [PubMed] [Google Scholar]
  • 180. Terauchi  A. M., Peers  G., Kobayashi  M. C., Niyogi  K. K., Merchant  S. S., Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis, Photosynth. Res., 2010, 105(1), 39–49. 10.1007/s11120-010-9562-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181. Xie  X., Hu  W., Fan  X., Chen  H., Tang  M., Interactions between phosphorus, zinc, and iron homeostasis in nonmycorrhizal and mycorrhizal plants, Front. Plant Sci., 2019, 10, 1172. 10.3389/fpls.2019.01172 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182. Cakmak  I., Marschner  H., Mechanism of phosphorus-induced zinc deficiency in cotton. I. Zinc deficiency-enhanced uptake rate of phosphorus, Physiol. Plant., 1986, 68(3), 483–490. 10.1111/j.1399-3054.1986.tb03386.x [DOI] [Google Scholar]
  • 183. Reed  H. S., Effects of zinc deficiency on phosphate metabolism of the tomato plant, Am. J. Bot., 1946, 33(10), 778–784. 10.1002/j.1537-2197.1946.tb12940.x [DOI] [PubMed] [Google Scholar]
  • 184. Hong-Hermesdorf  A., Miethke  M., Gallaher  S. D., Kropat  J., Dodani  S. C., Chan  J., Barupala  D., Domaille  D. W., Shirasaki  D. I., Loo  J. A., Weber  P. K., Pett-Ridge  J., Stemmler  T. L., Chang  C. J., Merchant  S. S., Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas, Nat. Chem. Biol., 2014, 10(12), 1034–1042. 10.1038/nchembio.1662 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185. Malasarn  D., Kropat  J., Hsieh  S. I., Finazzi  G., Casero  D., Loo  J. A., Pellegrini  M., Wollman  F. A., Merchant  S. S., Zinc deficiency impacts CO2 assimilation and disrupts copper homeostasis in Chlamydomonas reinhardtii, J. Biol. Chem., 2013, 288(15), 10672–10683. 10.1074/jbc.M113.455105 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186. Docampo  R., Scott  D. A., Vercesi  A. E., Moreno  S. N., Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi, Biochem. J., 1995, 310(3), 1005–1012. 10.1042/bj3101005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187. Li  S. C., Kane  P. M., The yeast lysosome-like vacuole: endpoint and crossroads, Biochim. Biophys. Acta, 2009, 1793(4), 650–663. 10.1016/j.bbamcr.2008.08.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188. Blaby-Haas  C. E., Merchant  S. S., Lysosome-related organelles as mediators of metal homeostasis, J. Biol. Chem., 2014, 289(41), 28129–28136. 10.1074/jbc.R114.592618 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189. Tan  X., Li  K., Wang  Z., Zhu  K., Cao  J., A review of plant vacuoles: formation, located proteins, and functions, Plants, 2019, 8(9), 327. 10.3390/plants8090327 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190. Docampo  R., The origin and evolution of the acidocalcisome and its interactions with other organelles, Mol. Biochem. Parasitol., 2016, 209(1-2), 3–9. 10.1016/j.molbiopara.2015.10.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191. Docampo  R., de Souza  W., Miranda  K., Rohloff  P., Moreno  S. N., Acidocalcisomes—conserved from bacteria to man, Nat. Rev. Microbiol., 2005, 3(3), 251–261. 10.1038/nrmicro1097 [DOI] [PubMed] [Google Scholar]
  • 192. Vercesi  A. E., Moreno  S. N., Docampo  R., Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei, Biochem J., 1994, 304(1), 227–233. 10.1042/bj3040227 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193. Deng  J., Vine  D. J., Chen  S., Jin  Q., Nashed  Y. S., Peterka  T., Vogt  S., Jacobsen  C., X-ray ptychographic and fluorescence microscopy of frozen-hydrated cells using continuous scanning, Sci. Rep., 2017, 7(1), 445. 10.1038/s41598-017-00569-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194. Tsednee  M., Castruita  M., Salomé  P. A., Sharma  A., Lewis  B. E., Schmollinger  S. R., Strenkert  D., Holbrook  K., Otegui  M. S., Khatua  K., Das  S., Datta  A., Chen  S., Ramon  C., Ralle  M., Weber  P. K., Stemmler  T. L., Pett-Ridge  J., Hoffman  B. M., Merchant  S. S., Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions, J. Biol. Chem., 2019, 294(46), 17626–17641. 10.1074/jbc.RA119.009130 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195. Schmollinger  S., Chen  S., Strenkert  D., Hui  C., Ralle  M., Merchant  S. S., Single-cell visualization and quantification of trace metals in Chlamydomonas lysosome-related organelles, Proc. Natl. Acad. Sci. USA, 2021, 118(16), e2026811118. 10.1073/pnas.2026811118 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196. Penen  F., Isaure  M. P., Dobritzsch  D., Bertalan  I., Castillo-Michel  H., Proux  O., Gontier  E., Le Coustumer  P., Schaumlöffel  D., Pools of cadmium in Chlamydomonas reinhardtii revealed by chemical imaging and XAS spectroscopy, Metallomics, 2017, 9(7), 910–923. 10.1039/c7mt00029d [DOI] [PubMed] [Google Scholar]
  • 197. Penen  F., Malherbe  J., Isaure  M. P., Dobritzsch  D., Bertalan  I., Gontier  E., Le Coustumer  P., Schaumloffel  D., Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS, J. Trace Elem. Med. Biol., 2016, 37, 62–68. 10.1016/j.jtemb.2016.04.014 [DOI] [PubMed] [Google Scholar]
  • 198. Thomine  S., Vert  G., Iron transport in plants: better be safe than sorry, Curr. Opin. Plant Biol., 2013, 16(3), 322–327. 10.1016/j.pbi.2013.01.003 [DOI] [PubMed] [Google Scholar]
  • 199. Koorts  A. M., Viljoen  M., Ferritin and ferritin isoforms I: structure–function relationships, synthesis, degradation and secretion, Arch. Physiol. Biochem., 2007, 113(1), 30–54. 10.1080/13813450701318583 [DOI] [PubMed] [Google Scholar]
  • 200. Theil  E. C., Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry, Curr. Opin. Chem. Biol., 2011, 15(2), 304–311. 10.1016/j.cbpa.2011.01.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201. Penen  F., Isaure  M. P., Dobritzsch  D., Castillo-Michel  H., Gontier  E., Le Coustumer  P., Malherbe  J., Schaumloffel  D., Pyrenoidal sequestration of cadmium impairs carbon dioxide fixation in a microalga, Plant Cell Environ., 2020, 43(2), 479–495. 10.1111/pce.13674 [DOI] [PubMed] [Google Scholar]
  • 202. Ali  H., Khan  E., What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’ – proposal of a comprehensive definition, Toxicol. Environ. Chem., 2018, 100(1), 6–19. 10.1080/02772248.2017.1413652 [DOI] [Google Scholar]
  • 203. Järup  L., Hazards of heavy metal contamination, Br. Med. Bull., 2003, 68(1), 167–182. 10.1093/bmb/ldg032 [DOI] [PubMed] [Google Scholar]
  • 204. Tchounwou  P. B., Yedjou  C. G., Patlolla  A. K., Sutton  D. J., Heavy metal toxicity and the environment, In: Luch  A (ed.), Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology, Springer, Basel, 2012, pp. 133–164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205. Ali  H., Khan  E., Ilahi  I., Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation, J. Chem., 2019, 2019, 6730305. 10.1155/2019/6730305 [DOI] [Google Scholar]
  • 206. Rich  G., Cherry  K., Hazardous Waste Treatment Technologies, Pudvan Publishing Co, Northbrook, IL, 1987. [Google Scholar]
  • 207. Ahalya  N., Ramachandra  T., Kanamadi  R., Biosorption of heavy metals, Res. J. Chem. Environ., 2003, 7(4), 71–79. [Google Scholar]
  • 208. Lawton  R. J., Mata  L., de Nys  R., Paul  N. A., Algal bioremediation of waste waters from land-based aquaculture using Ulva: selecting target species and strains, PLoS One, 2013, 8(10), e77344. 10.1371/journal.pone.0077344 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209. Fabris  M., Abbriano  R. M., Pernice  M., Sutherland  D. L., Commault  A. S., Hall  C. C., Labeeuw  L., McCauley  J. I., Kuzhiuparambil  U., Ray  P., Kahlke  T., Ralph  P. J., Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy, Front. Plant Sci., 2020, 11, 279. 10.3389/fpls.2020.00279 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210. Goswami  R. K., Agrawal  K., Shah  M. P., Verma  P., Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future, Lett. Appl. Microbiol., 2022, 75(4), 701–717. 10.1111/lam.13564 [DOI] [PubMed] [Google Scholar]
  • 211. Garg  M., Sharma  N., Sharma  S., Kapoor  P., Kumar  A., Chunduri  V., Arora  P., Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world, Front. Nutr., 2018, 5, 12. 10.3389/fnut.2018.00012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212. Ferreira  M., Ribeiro  P. C., Ribeiro  L., Barata  M., Domingues  V. F., Sousa  S., Soares  C., Marques  A., Pousao-Ferreira  P., Dias  J., Castro  L. F. C., Marques  A., Nunes  M. L., Valente  L. M. P., Biofortified diets containing algae and selenised yeast: effects on growth performance, nutrient utilization, and tissue composition of gilthead seabream (Sparus aurata), Front. Physiol., 2021, 12, 812884. 10.3389/fphys.2021.812884 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213. Punshon  T., Guerinot  M. L., Lanzirotti  A., Using synchrotron X-ray fluorescence microprobes in the study of metal homeostasis in plants, Ann. Bot., 2009, 103(5), 665–672. 10.1093/aob/mcn264 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214. Ackerman  C. M., Lee  S., Chang  C. J., Analytical methods for imaging metals in biology: from transition metal metabolism to transition metal signaling, Anal. Chem., 2017, 89(1), 22–41. 10.1021/acs.analchem.6b04631 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 215. Stewart  T. J., Across the spectrum: integrating multidimensional metal analytics for in situ metallomic imaging, Metallomics, 2019, 11(1), 29–49. 10.1039/c8mt00235e [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216. Schulze  D. G., Bertsch  P. M., Synchrotron X-ray techniques in soil, plant, and environmental research, In: Sparks  DL (ed). Advances in Agronomy, Academic Press, Cambridge, MA, 1995, 1–66. [Google Scholar]
  • 217. Hare  D. J., New  E. J., de Jonge  M. D., McColl  G., Imaging metals in biology: balancing sensitivity, selectivity and spatial resolution, Chem. Soc. Rev., 2015, 44(17), 5941–5958. 10.1039/c5cs00055f [DOI] [PubMed] [Google Scholar]
  • 218. Carter  K. P., Young  A. M., Palmer  A. E., Fluorescent sensors for measuring metal ions in living systems, Chem. Rev., 2014, 114(8), 4564–4601. 10.1021/cr400546e [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 219. McCranor  B. J., Bozym  R. A., Vitolo  M. I., Fierke  C. A., Bambrick  L., Polster  B. M., Fiskum  G., Thompson  R. B., Quantitative imaging of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion, J. Bioenerg. Biomembr., 2012, 44(2), 253–263. 10.1007/s10863-012-9427-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220. Kopittke  P. M., Punshon  T., Paterson  D. J., Tappero  R. V., Wang  P., Blamey  F. P. C., van der Ent  A., Lombi  E., Synchrotron-based X-ray fluorescence microscopy as a technique for imaging of elements in plants, Plant Physiol., 2018, 178(2), 507–523. 10.1104/pp.18.00759 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221. Pushie  M. J., Pickering  I. J., Korbas  M., Hackett  M. J., George  G. N., Elemental and chemically specific X-ray fluorescence imaging of biological systems, Chem. Rev., 2014, 114(17), 8499–8541. 10.1021/cr4007297 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222. Fittschen  U. E. A., Kunz  H. H., Höhner  R., Tyssebotn  I. M. B., Fittschen  A., A new micro X-ray fluorescence spectrometer for in vivo elemental analysis in plants, X-Ray Spectrom., 2017, 46(5), 374–381. 10.1002/xrs.2783 [DOI] [Google Scholar]
  • 223. Chen  S., Deng  J., Yuan  Y., Flachenecker  C., Mak  R., Hornberger  B., Jin  Q., Shu  D., Lai  B., Maser  J., Roehrig  C., Paunesku  T., Gleber  S. C., Vine  D. J., Finney  L., VonOsinski  J., Bolbat  M., Spink  I., Chen  Z., Steele  J., Trapp  D., Irwin  J., Feser  M., Snyder  E., Brister  K., Jacobsen  C., Woloschak  G., Vogt  S., The bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities, J. Synchrotron Radiat., 2014, 21(1), 66–75. 10.1107/S1600577513029676 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224. Martinez-Criado  G., Villanova  J., Tucoulou  R., Salomon  D., Suuronen  J. P., Laboure  S., Guilloud  C., Valls  V., Barrett  R., Gagliardini  E., Dabin  Y., Baker  R., Bohic  S., Cohen  C., Morse  J., ID16B: a hard X-ray nanoprobe beamline at the ESRF for nano-analysis, J. Synchrotron Radiat., 2016, 23(1), 344–352. 10.1107/S1600577515019839 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225. Yan  H. F., Bouet  N., Zhou  J., Huang  X. J., Nazaretski  E., Xu  W. H., Cocco  A. P., Chiu  W. K. S., Brinkman  K. S., Chu  Y. S., Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science, Nano Futures, 2018, 2(1), 011001. https://doi.org/Artn 01100110.1088/2399-1984/Aab25d [Google Scholar]
  • 226. Matsuyama  S., Shimura  M., Fujii  M., Maeshima  K., Yumoto  H., Mimura  H., Sano  Y., Yabashi  M., Nishino  Y., Tamasaku  K., Ishizaka  Y., Ishikawa  T., Yamauchi  K., Elemental mapping of frozen-hydrated cells with cryo-scanning X-ray fluorescence microscopy, X-Ray Spectrom., 2010, 39(4), 260–266. 10.1002/xrs.1256 [DOI] [Google Scholar]
  • 227. Schroer  C. G., Boye  P., Feldkamp  J. M., Patommel  J., Samberg  D., Schropp  A., Schwab  A., Stephan  S., Falkenberg  G., Wellenreuther  G., Reimers  N., Hard X-ray nanoprobe at beamline P06 at PETRA III, Nucl. Instrum. Meth. A, 2010, 616(2-3), 93–97. 10.1016/j.nima.2009.10.094 [DOI] [Google Scholar]
  • 228. Somogyi  A., Medjoubi  K., Baranton  G., Le Roux  V., Ribbens  M., Polack  F., Philippot  P., Samama  J. P, Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of Synchrotron Soleil, J. Synchrotron Radiat., 2015, 22(4), 1118–1129. 10.1107/S1600577515009364 [DOI] [PubMed] [Google Scholar]
  • 229. Winarski  R. P., Holt  M. V., Rose  V., Fuesz  P., Carbaugh  D., Benson  C., Shu  D., Kline  D., Stephenson  G. B., McNulty  I., Maser  J., A hard X-ray nanoprobe beamline for nanoscale microscopy, J. Synchrotron Radiat., 2012, 19(6), 1056–1060. 10.1107/S0909049512036783 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230. Cotte  M., Pouyet  E., Salomé  M., Rivard  C., De Nolf  W., Castillo-Michel  H., Fabris  T., Monico  L., Janssens  K., Wang  T., Sciau  P., Verger  L., Cormier  L., Dargaud  O., Brun  E., Bugnazet  D., Fayard  B., Hesse  B., Pradas del Real  A. E., Veronesi  G., Langlois  J., Balcar  N., Vandenberghe  Y., Solé  V. A., Kieffer  J., Barrett  R., Cohen  C., Cornu  C., Baker  R., Gagliardini  E., Papillon  E., Susini  J., The ID21 X-ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials, J. Anal. At. Spectrom., 2017, 32(3), 477–493. 10.1039/c6ja00356g [DOI] [Google Scholar]
  • 231. Quinn  P. D., Alianelli  L., Gomez-Gonzalez  M., Mahoney  D., Cacho-Nerin  F., Peach  A., Parker  J. E., The hard X-ray nanoprobe beamline at diamond light source, J. Synchrotron Radiat., 2021, 28(3), 1006–1013. 10.1107/S1600577521002502 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232. Gamble  L. J., Anderton  C. R., Secondary ion mass spectrometry imaging of tissues, cells, and microbial systems, Micros Today, 2016, 24(2), 24–31. 10.1017/S1551929516000018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233. Malherbe  J., Penen  F., Isaure  M.-P., Frank  J., Hause  G., Dobritzsch  D., Gontier  E., Horréard  F., Hillion  F., Schaumlöffel  D., A new radio frequency plasma oxygen primary ion source on nano secondary ion mass spectrometry for improved lateral resolution and detection of electropositive elements at single cell level, Anal. Chem., 2016, 88(14), 7130–7136. 10.1021/acs.analchem.6b01153 [DOI] [PubMed] [Google Scholar]
  • 234. George  G. N., Pickering  I. J., Pushie  M. J., Nienaber  K., Hackett  M. J., Ascone  I., Hedman  B., Hodgson  K. O., Aitken  J. B., Levina  A., Glover  C., Lay  P. A., X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples, J. Synchrotron Radiat., 2012, 19(6), 875–886. 10.1107/S090904951203943X [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235. Van Malderen  S. J. M., Van Acker  T., Vanhaecke  F., Sub-micrometer nanosecond LA-ICP-MS imaging at pixel acquisition rates above 250 Hz via a low-dispersion setup, Anal. Chem., 2020, 92(8), 5756–5764. 10.1021/acs.analchem.9b05056 [DOI] [PubMed] [Google Scholar]
  • 236. Jiménez-Lamana  J., Szpunar  J., Łobinski  R., New frontiers of metallomics: elemental and species-specific analysis and imaging of single cells, In: Arruda  MAZ (ed.), Metallomics: The Science of Biometals, Springer International Publishing, Cham, 2018, pp. 245–270. [DOI] [PubMed] [Google Scholar]
  • 237. Friedl  T., Brinkmann  N., Mohr  K. I., Algae (Eukaryotic), In: Reitner  J, Thiel  V (eds), Encyclopedia of Geobiology, Springer, Dordrecht, 2011, 10–20. [Google Scholar]
  • 238. Palmer  J. D., The symbiotic birth and spread of plastids: how many times and whodunit?,J. Phycol., 2003, 39(1), 4–12. 10.1046/j.1529-8817.2003.02185.x [DOI] [Google Scholar]
  • 239. Keeling  P. J., The number, speed, and impact of plastid endosymbioses in eukaryotic evolution, Annu. Rev. Plant Biol., 2013, 64(1), 583–607. 10.1146/annurev-arplant-050312-120144 [DOI] [PubMed] [Google Scholar]
  • 240. Salome  P. A., Merchant  S. S., A series of fortunate events: introducing Chlamydomonas as a reference organism, Plant Cell, 2019, 31(8), 1682–1707. 10.1105/tpc.18.00952 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241. Merchant  S. S., Prochnik  S. E., Vallon  O., Harris  E. H., Karpowicz  S. J., Witman  G. B., Terry  A., Salamov  A., Fritz-Laylin  L. K., Maréchal-Drouard  L., Marshall  W. F., Qu  L. H., Nelson  D. R., Sanderfoot  A. A., Spalding  M. H., Kapitonov  V. V., Ren  Q., Ferris  P., Lindquist  E., Shapiro  H., Lucas  S. M., Grimwood  J., Schmutz  J., Cardol  P., Cerutti  H., Chanfreau  G., Chen  C. L., Cognat  V., Croft  M. T., Dent  R., Dutcher  S., Fernández  E., Fukuzawa  H., González-Ballester  D., González-Halphen  D., Hallmann  A., Hanikenne  M., Hippler  M., Inwood  W., Jabbari  K., Kalanon  M., Kuras  R., Lefebvre  P. A., Lemaire  S. D., Lobanov  A. V., Lohr  M., Manuell  A., Meier  I., Mets  L., Mittag  M., Mittelmeier  T., Moroney  J. V., Moseley  J., Napoli  C., Nedelcu  A. M., Niyogi  K., Novoselov  S. V., Paulsen  I. T., Pazour  G., Purton  S., Ral  J. P., Riaño-Pachón  D. M., Riekhof  W., Rymarquis  L., Schroda  M., Stern  D., Umen  J., Willows  R., Wilson  N., Zimmer  S. L., Allmer  J., Balk  J., Bisova  K., Chen  C. J., Elias  M., Gendler  K., Hauser  C., Lamb  M. R., Ledford  H., Long  J. C., Minagawa  J., Page  M. D., Pan  J., Pootakham  W., Roje  S., Rose  A., Stahlberg  E., Terauchi  A. M., Yang  P., Ball  S., Bowler  C., Dieckmann  C. L., Gladyshev  V. N., Green  P., Jorgensen  R., Mayfield  S., Mueller-Roeber  B., Rajamani  S., Sayre  R. T., Brokstein  P., Dubchak  I., Goodstein  D., Hornick  L., Huang  Y. W., Jhaveri  J., Luo  Y., Martínez  D., Ngau  W. C., Otillar  B., Poliakov  A., Porter  A., Szajkowski  L., Werner  G., Zhou  K., Grigoriev  I. V., Rokhsar  D. S., Grossman  A. R., The Chlamydomonas genome reveals the evolution of key animal and plant functions, Science, 2007, 318(5848), 245–250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242. Gimpel  J. A., Specht  E. A., Georgianna  D. R., Mayfield  S. P., Advances in microalgae engineering and synthetic biology applications for biofuel production, Curr. Opin. Chem. Biol., 2013, 17(3), 489–495. 10.1016/j.cbpa.2013.03.038 [DOI] [PubMed] [Google Scholar]
  • 243. Stephenson  P. G., Moore  C. M., Terry  M. J., Zubkov  M. V., Bibby  T. S., Improving photosynthesis for algal biofuels: toward a green revolution, Trends Biotechnol., 2011, 29(12), 615–623. 10.1016/j.tibtech.2011.06.005 [DOI] [PubMed] [Google Scholar]
  • 244. Castruita  M., Casero  D., Karpowicz  S. J., Kropat  J., Vieler  A., Hsieh  S. I., Yan  W., Cokus  S., Loo  J. A., Benning  C., Pellegrini  M., Merchant  S. S., Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps, Plant Cell, 2011, 23(4), 1273–1292. 10.1105/tpc.111.084400 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245. Urzica  E. I., Casero  D., Yamasaki  H., Hsieh  S. I., Adler  L. N., Karpowicz  S. J., Blaby-Haas  C. E., Clarke  S. G., Loo  J. A., Pellegrini  M., Merchant  S. S., Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage, Plant Cell, 2012, 24(10), 3921–3948. 10.1105/tpc.112.102491 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246. Aksoy  M., Pootakham  W., Grossman  A. R., Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation, Plant Cell, 2014, 26(10), 4214–4229. 10.1105/tpc.114.129270 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247. Fernandez  E., Galvan  A., Inorganic nitrogen assimilation in Chlamydomonas, J. Exp. Bot., 2007, 58(9), 2279–2287. 10.1093/jxb/erm106 [DOI] [PubMed] [Google Scholar]
  • 248. Moseley  J. L., Gonzalez-Ballester  D., Pootakham  W., Bailey  S., Grossman  A. R., Genetic interactions between regulators of Chlamydomonas phosphorus and sulfur deprivation responses, Genetics, 2009, 181(3), 889–905. 10.1534/genetics.108.099382 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 249. Page  M. D., Allen  M. D., Kropat  J., Urzica  E. I., Karpowicz  S. J., Hsieh  S. I., Loo  J. A., Merchant  S. S., Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii, Plant Cell, 2012, 24(6), 2649–2665. 10.1105/tpc.112.098962 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250. Moseley  J., Quinn  J., Eriksson  M., Merchant  S., The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii, EMBO J., 2000, 19(10), 2139–2151. 10.1093/emboj/19.10.2139 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251. Allen  M. D., Kropat  J., Merchant  S. S., Regulation and localization of isoforms of the aerobic oxidative cyclase in Chlamydomonas reinhardtii, Photochem. Photobiol., 2008, 84(6), 1336–1342. https://doi.org/PHP440 [pii]10.1111/j.1751-1097.2008.00440.x [DOI] [PubMed] [Google Scholar]
  • 252. Merchant  S. S., The elements of plant micronutrients, Plant Physiol., 2010, 154(2), 512–515. 10.1104/pp.110.161810 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253. Long  J. C., Sommer  F., Allen  M. D., Lu  S. F., Merchant  S. S., FER1 and FER2 encoding two ferritin complexes in Chlamydomonas reinhardtii chloroplasts are regulated by iron, Genetics, 2008, 179(1), 137–147. 10.1534/genetics.107.083824 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254. Komsic-Buchmann  K., Wostehoff  L., Becker  B., The contractile vacuole as a key regulator of cellular water flow in Chlamydomonas reinhardtii, Eukaryot Cell, 2014, 13(11), 1421–1430. 10.1128/EC.00163-14 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 255. Nelson  D. M., Tréguer  P., Brzezinski  M. A., Leynaert  A., Queguiner  B., Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation, Global Biogeochem. Cycles, 1995, 9(3), 359–372. 10.1029/95gb01070 [DOI] [Google Scholar]
  • 256. Chappell  P. D., Whitney  L. P., Haddock  T. L., Menden-Deuer  S., Roy  E. G., Wells  M. L., Jenkins  B. D., Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean, Front. Microbiol., 2013, 4, 273. 10.3389/fmicb.2013.00273 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257. Stoermer  E. F., Centric Diatoms  M. L., Centric diatoms, In: Wehr  JD, Sheath  RG (eds), Freshwater Algae of North America. Academic Press, Burlington, 2003, pp. 559–594. [Google Scholar]
  • 258. Hildebrand  M., Lerch  S. J. L., Shrestha  R. P., Understanding diatom cell wall silicification—moving forward, Front. Mar. Sci., 2018, 5. https://doi.org/ARTN 12510.3389/fmars.2018.00125 [Google Scholar]
  • 259. Armbrust  E. V., Berges  J. A., Bowler  C., Green  B. R., Martinez  D., Putnam  N. H., Zhou  S., Allen  A. E., Apt  K. E., Bechner  M., Brzezinski  M. A., Chaal  B. K., Chiovitti  A., Davis  A. K., Demarest  M. S., Detter  J. C., Glavina  T., Goodstein  D., Hadi  M. Z., Hellsten  U., Hildebrand  M., Jenkins  B. D., Jurka  J., Kapitonov  V. V., Kroger  N., Lau  W. W., Lane  T. W., Larimer  F. W., Lippmeier  J. C., Lucas  S., Medina  M., Montsant  A., Obornik  M., Parker  M. S., Palenik  B., Pazour  G. J., Richardson  P. M., Rynearson  T. A., Saito  M. A., Schwartz  D. C., Thamatrakoln  K., Valentin  K., Vardi  A., Wilkerson  F. P., Rokhsar  D. S., The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism, Science, 2004, 306(5693), 79–86. 10.1126/science.1101156 [DOI] [PubMed] [Google Scholar]
  • 260. Lommer  M., Specht  M., Roy  A. S., Kraemer  L., Andreson  R., Gutowska  M. A., Wolf  J., Bergner  S. V., Schilhabel  M. B., Klostermeier  U. C., Beiko  R. G., Rosenstiel  P., Hippler  M., LaRoche  J., Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation, Genome Biol., 2012, 13(7), R66. 10.1186/gb-2012-13-7-r66 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 261. Poulsen  N., Chesley  P. M., Kröger  N., Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae), J. Phycol., 2006, 42(5), 1059–1065. 10.1111/j.1529-8817.2006.00269.x [DOI] [Google Scholar]
  • 262. Falciatore  A., Casotti  R., Leblanc  C., Abrescia  C., Bowler  C., Transformation of nonselectable reporter genes in marine diatoms, Mar. Biotechnol., 1999, 1(3), 239–251. 10.1007/pl00011773 [DOI] [PubMed] [Google Scholar]
  • 263. Sumper  M., Brunner  E., Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana, Chembiochem: Eur. J. Chem. Biol., 2008, 9(8), 1187–1194. 10.1002/cbic.200700764 [DOI] [PubMed] [Google Scholar]
  • 264. Marchetti  A., Cassar  N., Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications, Geobiology, 2009, 7(4), 419–431. 10.1111/j.1472-4669.2009.00207.x [DOI] [PubMed] [Google Scholar]
  • 265. Martin  J. H., Gordon  R. M., Fitzwater  S. E., The case for iron, Limnol. Oceanogr., 1991, 36(8), 1793–1802. 10.4319/lo.1991.36.8.1793 [DOI] [Google Scholar]
  • 266. Tsuda  A., Takeda  S., Saito  H., Nishioka  J., Nojiri  Y., Kudo  I., Kiyosawa  H., Shiomoto  A., Imai  K., Ono  T., Shimamoto  A., Tsumune  D., Yoshimura  T., Aono  T., Hinuma  A., Kinugasa  M., Suzuki  K., Sohrin  Y., Noiri  Y., Tani  H., Deguchi  Y., Tsurushima  N., Ogawa  H., Fukami  K., Kuma  K., Saino  T., A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom, Science, 2003, 300(5621), 958–961. 10.1126/science.1082000 [DOI] [PubMed] [Google Scholar]
  • 267. Horowitz  P., Some experiences with x-ray and proton microscopes, Ann. NY Acad. Sci., 1978, 306(1), 203–222. 10.1111/j.1749-6632.1978.tb25650.x [DOI] [Google Scholar]
  • 268. Twining  B. S., Baines  S. B., Fisher  N. S., Maser  J., Vogt  S., Jacobsen  C., Tovar-Sanchez  A., Sanudo-Wilhelmy  S. A., Quantifying trace elements in individual aquatic protist cells with a synchrotron X-ray fluorescence microprobe, Anal. Chem., 2003, 75(15), 3806–3816. 10.1021/ac034227z [DOI] [PubMed] [Google Scholar]
  • 269. Twining  B. S., Baines  S. B., Fisher  N. S., Jacobsen  C., Maser  J., Quantification and localization of trace metals in natural plankton cells using a synchrotron X-ray fluorescence microprobe, J. Phys. IV France, 2003, 104, 435–438. [Google Scholar]
  • 270. Twining  B. S., Baines  S. B., Fisher  N. S., Landry  M. R., Cellular iron contents of plankton during the Southern Ocean Iron Experiment (SOFeX), Deep Sea Res. Pt I, 2004, 51(12), 1827–1850. 10.1016/j.dsr.2004.08.007 [DOI] [Google Scholar]
  • 271. Twining  B. S., Rauschenberg  S., Morton  P. L., Vogt  S., Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean, Prog. Oceanogr., 2015, 137(Part A), 261–283. 10.1016/j.pocean.2015.07.001 [DOI] [Google Scholar]
  • 272. Adams  M. S., Dillon  C. T., Vogt  S., Lai  B., Stauber  J., Jolley  D. F., Copper uptake, intracellular localization, and speciation in marine microalgae measured by synchrotron radiation X-ray fluorescence and absorption microspectroscopy, Environ. Sci. Technol., 2016, 50(16), 8827–8839. 10.1021/acs.est.6b00861 [DOI] [PubMed] [Google Scholar]
  • 273. Nuester  J., Vogt  S., Twining  B. S., Localization of iron within centric diatoms of the genus Thalassiosira, J. Phycol., 2012, 48(3), 626–634. 10.1111/j.1529-8817.2012.01165.x [DOI] [PubMed] [Google Scholar]
  • 274. de Jonge  M. D., Holzner  C., Baines  S. B., Twining  B. S., Ignatyev  K., Diaz  J., Howard  D. L., Legnini  D., Miceli  A., McNulty  I., Jacobsen  C. J., Vogt  S., Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution, Proc. Natl. Acad. Sci. USA, 2010, 107(36), 15676–15680. 10.1073/pnas.1001469107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 275. Diaz  J., Ingall  E., Vogt  S., de Jonge  M. D., Paterson  D., Rau  C., Brandes  J. A., Characterization of phosphorus, calcium, iron, and other elements in organisms at sub-micron resolution using X-ray fluorescence spectromicroscopy, Limnol. Oceanogr. Meth., 2009, 7(1), 42–51. 10.4319/lom.2009.7.42 [DOI] [Google Scholar]
  • 276. Deng  J., Vine  D. J., Chen  S., Nashed  Y. S., Jin  Q., Phillips  N. W., Peterka  T., Ross  R., Vogt  S., Jacobsen  C. J, Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae, Proc. Natl. Acad. Sci. USA, 2015, 112(8), 2314–2319. 10.1073/pnas.1413003112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 277. Deng  J., Lo  Y. H., Gallagher-Jones  M., Chen  S., Pryor  A.  Jr, Jin  Q., Hong  Y. P., Nashed  Y. S. G., Vogt  S., Miao  J., Jacobsen  C., Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae, Sci. Adv., 2018, 4(11), eaau4548. 10.1126/sciadv.aau4548 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 278. Leonardo  T., Farhi  E., Boisson  A. M., Vial  J., Cloetens  P., Bohic  S., Rivasseau  C., Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques—subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis, Metallomics, 2014, 6(2), 316–329. 10.1039/c3mt00281k [DOI] [PubMed] [Google Scholar]
  • 279. Bottini  C., Dapiaggi  M., Erba  E., Faucher  G., Rotiroti  N., High resolution spatial analyses of trace elements in coccoliths reveal new insights into element incorporation in coccolithophore calcite, Sci. Rep., 2020, 10(1), 9825. 10.1038/s41598-020-66503-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 280. Beuvier  T., Probert  I., Beaufort  L., Suchéras-Marx  B., Chushkin  Y., Zontone  F., Gibaud  A., X-ray nanotomography of coccolithophores reveals that coccolith mass and segment number correlate with grid size, Nat. Commun., 2019, 10(1), 751. 10.1038/s41467-019-08635-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 281. Harris  E. H., The Chlamydomonas Sourcebook Second Edition Introduction to Chlamydomonas and Its Laboratory Use, Elsevier, San Diego, CA, 2008. [Google Scholar]
  • 282. Hutner  S. H., Provasoli  L., Schatz  A., Haskins  C. P., Some approaches to the study of the role of metals in the metabolism of microorganisms, Proc. Am. Philos. Soc., 1950, 94(2), 152–170. [Google Scholar]
  • 283. Kropat  J., Hong-Hermesdorf  A., Casero  D., Ent  P., Castruita  M., Pellegrini  M., Merchant  S. S., Malasarn  D., A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii, Plant J., 2011, 66(5), 770–780. 10.1111/j.1365-313X.2011.04537.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284. Quinn  J. M., Merchant  S., Copper-responsive gene expression during adaptation to copper deficiency, Methods Enzymol., 1998, 297, 263–279. [DOI] [PubMed] [Google Scholar]
  • 285. Stitt  M., Wirtz  W., Heldt  H. W., Metabolite levels during induction in the chloroplast and extrachloroplast compartments of spinach protoplasts, Biochim. Biophys. Acta, 1980, 593(1), 85–102. 10.1016/0005-2728(80)90010-9 [DOI] [PubMed] [Google Scholar]
  • 286. Stitt  M., Wirtz  W., Heldt  H. W., Regulation of sucrose synthesis by cytoplasmic fructosebisphosphatase and sucrose phosphate synthase during photosynthesis in varying light and carbon dioxide, Plant Physiol., 1983, 72(3), 767–774. 10.1104/pp.72.3.767 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 287. Jin  Q., Paunesku  T., Lai  B., Gleber  S.-C., Chen  S. I., Finney  L., Vine  D., Vogt  S., Woloschak  G., Jacobsen  C., Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based x-ray fluorescence microscopy, J. Microsc., 2017, 265(1), 81–93. 10.1111/jmi.12466 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 288. Ganio  K., James  S., Hare  D., Roberts  B., McColl  G., Accurate biometal quantification per individual Caenorhabditis elegans, Analyst, 2016, 141. 10.1039/C5AN02544C [DOI] [PubMed] [Google Scholar]
  • 289. Jurowski  K., Buszewski  B., Piekoszewski  W., The analytical calibration in (bio)imaging/mapping of the metallic elements in biological samples—definitions, nomenclature and strategies: state of the art, Talanta, 2015, 131, 273–285. 10.1016/j.talanta.2014.07.089 [DOI] [PubMed] [Google Scholar]
  • 290. Chen  S., Paunesku  T., Yuan  Y., Jin  Q., Hornberger  B., Flachenecker  C., Lai  B., Brister  K., Jacobsen  C., Woloschak  G., Vogt  S., The bionanoprobe: synchrotron-based hard X-ray fluorescence microscopy for 2D/3D trace element mapping, Micros Today, 2015, 23(3), 26–29. 10.1017/S1551929515000401 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 291. Strenkert  D., Schmollinger  S., Gallaher  S. D., Salome  P. A., Purvine  S. O., Nicora  C. D., Mettler-Altmann  T., Soubeyrand  E., Weber  A. P. M., Lipton  M. S., Basset  G. J., Merchant  S. S., Multiomics resolution of molecular events during a day in the life of Chlamydomonas, Proc. Natl. Acad. Sci. USA, 2019, 116(6), 2374–2383. 10.1073/pnas.1815238116 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 292. Zones  J. M., Blaby  I. K., Merchant  S. S., Umen  J. G., High-resolution profiling of a synchronized diurnal transcriptome from Chlamydomonas reinhardtii reveals continuous cell and metabolic differentiation, Plant Cell, 2015, 27(10), 2743–2769. 10.1105/tpc.15.00498 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 293. Spudich  J. L., Sager  R., Regulation of the Chlamydomonas cell cycle by light and dark, J. Cell. Biol., 1980, 85(1), 136–145. 10.1083/jcb.85.1.136 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 294. Kates  J. R., Jones  R. F., The control of gametic differentiation in liquid cultures of Chlamydomonas, J. Cell. Comp. Physiol., 1964, 63(2), 157–164. 10.1002/jcp.1030630204 [DOI] [PubMed] [Google Scholar]
  • 295. Vogt  S. M., A set of software tools for analysis and visualization of 3D X-ray fluorescence data sets, J. Phys. IV France, 2003, 104, 635–638. [Google Scholar]
  • 296. Solé  V. A., Papillon  E., Cotte  M., Walter  P., Susini  J., A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochim. Acta Part B, 2007, 62(1), 63–68. 10.1016/j.sab.2006.12.002 [DOI] [Google Scholar]
  • 297. Cotte  M., Fabris  T., Agostini  G., Motta Meira  D., De Viguerie  L., Solé  V. A., Watching kinetic studies as chemical maps using open-source software, Anal. Chem., 2016, 88(12), 6154–6160. 10.1021/acs.analchem.5b04819 [DOI] [PubMed] [Google Scholar]
  • 298. Nietzold  T., West  B. M., Stuckelberger  M., Lai  B., Vogt  S., Bertoni  M. I., Quantifying X-ray fluorescence data using MAPS, J. Vis. Exp., 2018, (132), 56042. 10.3791/56042 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 299. Docampo  R., Acidocalcisomes and polyphosphate granules, In: Shively  JM (ed.), Inclusions in Prokaryotes. Springer, Berlin, 2006, 53–70. [Google Scholar]
  • 300. Stock  C., Grønlien  H. K., Allen  R. D., Naitoh  Y., Osmoregulation in Paramecium: in situ ion gradients permit water to cascade through the cytosol to the contractile vacuole, J. Cell Sci., 2002, 115(11), 2339–2348. 10.1242/jcs.115.11.2339 [DOI] [PubMed] [Google Scholar]
  • 301. Xu  F., Wu  X., Jiang  L. H., Zhao  H., Pan  J., An organelle K+ channel is required for osmoregulation in Chlamydomonas reinhardtii, J. Cell Sci., 2016, 129(15), 3008–3014. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data underlying this review are available in the article and in its online supplementary material.


Articles from Metallomics: Integrated Biometal Science are provided here courtesy of Oxford University Press

RESOURCES