Skip to main content
Thorax logoLink to Thorax
. 1991 Nov;46(11):829–834. doi: 10.1136/thx.46.11.829

Changes in atrial natriuretic peptide concentrations during intravenous saline infusion in hypoxic cor pulmonale.

A G Stewart 1, P A Bardsley 1, S V Baudouin 1, J C Waterhouse 1, J S Thompson 1, A H Morice 1, P Howard 1
PMCID: PMC1021038  PMID: 1837627

Abstract

BACKGROUND: The pathogenesis of oedema in hypoxic cor pulmonale is poorly understood. One possibility is a failure of atrial natriuretic peptide release, leading to salt and water retention. This hypothesis was tested by observing the response to an intravenous saline challenge in patients with and without cor pulmonale. METHODS: Plasma atrial natriuretic peptide concentrations were measured before and for three hours after an intravenous saline load (0.1 ml 2.7% saline/kg/min for 60 minutes) in 20 patients with chronic obstructive airways disease. Ten patients with cor pulmonale, as judged clinically by the presence of peripheral oedema with a previously documented increase in the jugular venous pressure or pleural effusions during an acute exacerbation of airway obstruction (mean (SE) age 67 (3) years, FEV1 0.73 (0.08) 1, arterial oxygen tension (PaO2) 6.4 (0.4) kPa, and arterial carbon dioxide tension (PaCO2) 6.7 (0.3) kPa), were compared with 10 patients with hypoxic chronic obstructive airways disease who had never had oedema (mean age 63 (1) years, FEV1 1.07 (0.09) 1, PaO2 8.6 (0.4) kPa, and PaCO2 5.3 (0.2) kPa). All patients were studied fasting and after diuretics had been stopped for three days. No supplemental oxygen was given. RESULTS: The mean four hourly urine sodium excretion was less in the patients who had oedema (27 (4.6) mmol, 13% of the intravenous load) than in those without oedema (82 (15.5) mmol, 43% of the load). Initial mean plasma atrial natriuretic peptide values were significantly higher in the patients with cor pulmonale (19.1 (1.6) compared with 10.2 (0.7) pmol/l) and the mean peak rise in atrial natriuretic peptide after the intravenous saline load had been given was 13 (8.0) pmol/l in the patients with cor pulmonale and 5.5 (2.3) pmol/l in the controls. There were no significant differences in plasma and urinary osmolality, blood pressure, or creatinine clearance between the groups. CONCLUSION: Patients with chronic obstructive airways disease and cor pulmonale have an impaired ability to excrete a hypertonic intravenous saline load despite a normal physiological release of plasma atrial natriuretic peptide.

Full text

PDF
832

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABER G. M., BAYLEY T. J., BISHOP J. M. INTER-RELATIONSHIPS BETWEEN RENAL AND CARDIAC FUNCTION AND RESPIRATORY GAS EXCHANGE IN OBSTRUCTIVE AIRWAYS DISEASE. Clin Sci. 1963 Oct;25:159–170. [PubMed] [Google Scholar]
  2. Anderson J. V., Donckier J., McKenna W. J., Bloom S. R. The plasma release of atrial natriuretic peptide in man. Clin Sci (Lond) 1986 Aug;71(2):151–155. doi: 10.1042/cs0710151. [DOI] [PubMed] [Google Scholar]
  3. BELL N. H., SCHEDL H. P., BARTTER F. C. AN EXPLANATION FOR ABNORMAL WATER RETENTION AND HYPOOSMOLALITY IN CONGESTIVE HEART FAILURE. Am J Med. 1964 Mar;36:351–360. doi: 10.1016/0002-9343(64)90161-5. [DOI] [PubMed] [Google Scholar]
  4. Brier M. E., Brier R. A., Luft F. C., Aronoff G. R. Kinetics and pharmacodynamics of atrial natriuretic peptide and lithium clearance in the isolated perfused rat kidney. J Pharmacol Exp Ther. 1987 Dec;243(3):868–873. [PubMed] [Google Scholar]
  5. Crandall M. E., Gregg C. M. In vitro evidence for an inhibitory effect of atrial natriuretic peptide on vasopressin release. Neuroendocrinology. 1986;44(4):439–445. doi: 10.1159/000124684. [DOI] [PubMed] [Google Scholar]
  6. Davis C. L., Briggs J. P. Effect of atrial natriuretic peptides on renal medullary solute gradients. Am J Physiol. 1987 Oct;253(4 Pt 2):F679–F684. doi: 10.1152/ajprenal.1987.253.4.F679. [DOI] [PubMed] [Google Scholar]
  7. Farber M. O., Roberts L. R., Weinberger M. H., Robertson G. L., Fineberg N. S., Manfredi F. Abnormalities of sodium and H2O handling in chronic obstructive lung disease. Arch Intern Med. 1982 Jul;142(7):1326–1330. [PubMed] [Google Scholar]
  8. Farber M. O., Weinberger M. H., Robertson G. L., Fineberg N. S. The effects of angiotensin-converting enzyme inhibition on sodium handling in patients with advanced chronic obstructive pulmonary disease. Am Rev Respir Dis. 1987 Oct;136(4):862–866. doi: 10.1164/ajrccm/136.4.862. [DOI] [PubMed] [Google Scholar]
  9. HAMMOND J. D., MACKINNON J., SMITH W. D., STUART-HARRIS C. H. The renal circulation in chronic pulmonary disease and pulmonary heart failure. Q J Med. 1956 Jul;25(99):389–405. [PubMed] [Google Scholar]
  10. Harris P. J., Thomas D., Morgan T. O. Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Nature. 1987 Apr 16;326(6114):697–698. doi: 10.1038/326697a0. [DOI] [PubMed] [Google Scholar]
  11. Hirth C., Stasch J. P., John A., Kazda S., Morich F., Neuser D., Wohlfeil S. The renal response to acute hypervolemia is caused by atrial natriuretic peptides. J Cardiovasc Pharmacol. 1986 Mar-Apr;8(2):268–275. doi: 10.1097/00005344-198603000-00008. [DOI] [PubMed] [Google Scholar]
  12. Janssen W. M., de Zeeuw D., van der Hem G. K., de Jong P. E. Atrial natriuretic peptide-induced decreases in renal blood flow in man: implications for the natriuretic mechanism. Clin Sci (Lond) 1989 Jul;77(1):55–60. doi: 10.1042/cs0770055. [DOI] [PubMed] [Google Scholar]
  13. Kiberd B. A., Larson T. S., Robertson C. R., Jamison R. L. Effect of atrial natriuretic peptide on vasa recta blood flow in the rat. Am J Physiol. 1987 Jun;252(6 Pt 2):F1112–F1117. doi: 10.1152/ajprenal.1987.252.6.F1112. [DOI] [PubMed] [Google Scholar]
  14. Liu F. Y., Cogan M. G. Atrial natriuretic factor does not inhibit basal or angiotensin II-stimulated proximal transport. Am J Physiol. 1988 Sep;255(3 Pt 2):F434–F437. doi: 10.1152/ajprenal.1988.255.3.F434. [DOI] [PubMed] [Google Scholar]
  15. Maack T., Marion D. N., Camargo M. J., Kleinert H. D., Laragh J. H., Vaughan E. D., Jr, Atlas S. A. Effects of auriculin (atrial natriuretic factor) on blood pressure, renal function, and the renin-aldosterone system in dogs. Am J Med. 1984 Dec;77(6):1069–1075. doi: 10.1016/0002-9343(84)90190-6. [DOI] [PubMed] [Google Scholar]
  16. MacNee W., Xue Q. F., Hannan W. J., Flenley D. C., Adie C. J., Muir A. L. Assessment by radionuclide angiography of right and left ventricular function in chronic bronchitis and emphysema. Thorax. 1983 Jul;38(7):494–500. doi: 10.1136/thx.38.7.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morice A. H., Pepke-Zaba J., Brown M. J., Thomas P. S., Higenbottam T. W. Atrial natriuretic peptide in primary pulmonary hypertension. Eur Respir J. 1990 Sep;3(8):910–913. [PubMed] [Google Scholar]
  18. Morice A., Pepke-Zaba J., Loysen E., Lapworth R., Ashby M., Higenbottam T., Brown M. Low dose infusion of atrial natriuretic peptide causes salt and water excretion in normal man. Clin Sci (Lond) 1988 Apr;74(4):359–363. doi: 10.1042/cs0740359. [DOI] [PubMed] [Google Scholar]
  19. Oliver R. M., Peacock A. J., Fleming J. S., Waller D. G. Renal and pulmonary effects of angiotensin converting enzyme inhibition in chronic hypoxic lung disease. Thorax. 1989 Jun;44(6):513–515. doi: 10.1136/thx.44.6.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PLATTS M. M., HAMMOND J. D., STUART-HARRIS C. H. A study of cor pulmonale in patients with chronic bronchitis. Q J Med. 1960 Oct;29:559–574. [PubMed] [Google Scholar]
  21. Reihman D. H., Farber M. O., Weinberger M. H., Henry D. P., Fineberg N. S., Dowdeswell I. R., Burt R. W., Manfredi F. Effect of hypoxemia on sodium and water excretion in chronic obstructive lung disease. Am J Med. 1985 Jan;78(1):87–94. doi: 10.1016/0002-9343(85)90467-x. [DOI] [PubMed] [Google Scholar]
  22. Renzetti A. D., Jr, McClement J. H., Litt B. D. The Veterans Administration cooperative study of pulmonary function. 3. Mortality in relation to respiratory function in chronic obstructive pulmonary disease. Am J Med. 1966 Jul;41(1):115–129. doi: 10.1016/0002-9343(66)90009-x. [DOI] [PubMed] [Google Scholar]
  23. SCHEDL H. P., BARTTER F. C. An explanation for and experimental correction of the abnormal water diuresis in cirrhosis. J Clin Invest. 1960 Feb;39:248–261. doi: 10.1172/JCI104035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sagnella G. A., Markandu N. D., Shore A. C., MacGregor G. A. Effects of changes in dietary sodium intake and saline infusion on immunoreactive atrial natriuretic peptide in human plasma. Lancet. 1985 Nov 30;2(8466):1208–1211. doi: 10.1016/s0140-6736(85)90741-x. [DOI] [PubMed] [Google Scholar]
  25. White R. J., Woodings D. F. Impaired water handling in chronic obstructive airways disease. Br Med J. 1971 Jun 5;2(5761):561–563. doi: 10.1136/bmj.2.5761.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Winter R. J., Davidson A. C., Treacher D., Rudd R. M., Anderson J. V., Meleagros L., Bloom S. R. Atrial natriuretic peptide concentrations in hypoxic secondary pulmonary hypertension: relation to haemodynamic and blood gas variables and response to supplemental oxygen. Thorax. 1989 Jan;44(1):58–62. doi: 10.1136/thx.44.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES