Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1984 Apr;47(4):354–364. doi: 10.1136/jnnp.47.4.354

An experimental study of acute subarachnoid haemorrhage in baboons: changes in cerebral blood volume, blood flow, electrical activity and water content.

H Kuyama, A Ladds, N M Branston, M Nitta, L Symon
PMCID: PMC1027776  PMID: 6427412

Abstract

Subarachnoid haemorrhage following transection of the posterior artery was produced in 10 baboons. Cerebral blood volume (CBV) decreased transiently after subarachnoid haemorrhage. Two basic patterns of intracranial pressure (ICP) were observed; in one ICP returned to normal but in the other it remained elevated. In this latter group four out of five animals showed an increase in CBV above the original level. There were delays in sensory conduction (measured using somatosensory evoked potentials) bilaterally; those on the contralateral side to the bleed were correlated with ICP whereas other factors are implicated on the ipsilateral side. Initial flow reduction and restoration of cerebral blood flow were both correlated with water content.

Full text

PDF
355

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLCOCK J. M., DRAKE C. G. RUPTURED INTRACRANIAL ANEURYSMS--THE ROLE OF ARTERIAL SPASM. J Neurosurg. 1965 Jan;22:21–29. doi: 10.3171/jns.1965.22.1.0021. [DOI] [PubMed] [Google Scholar]
  2. Asano T., Sano K. Pathogenetic role of no-reflow phenomenon in experimental subarachnoid hemorrhage in dogs. J Neurosurg. 1977 Apr;46(4):454–466. doi: 10.3171/jns.1977.46.4.0454. [DOI] [PubMed] [Google Scholar]
  3. Branston N. M., Symon L., Strong A. J. Reversibility of ischaemically induced changes in extracellular potassium in primate cortex. J Neurol Sci. 1978 Jun;37(1-2):37–49. doi: 10.1016/0022-510x(78)90226-5. [DOI] [PubMed] [Google Scholar]
  4. Dorsch N. W., Stephens R. J., Symon L. An intracranial pressure transducer. Biomed Eng. 1971 Oct;6(10):452–passim. [PubMed] [Google Scholar]
  5. Grubb R. L., Jr, Raichle M. E., Eichling J. O., Gado M. H. Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans. J Neurosurg. 1977 Apr;46(4):446–453. doi: 10.3171/jns.1977.46.4.0446. [DOI] [PubMed] [Google Scholar]
  6. Grubb R. L., Jr, Raichle M. E., Eichling J. O., Ter-Pogossian M. M. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke. 1974 Sep-Oct;5(5):630–639. doi: 10.1161/01.str.5.5.630. [DOI] [PubMed] [Google Scholar]
  7. Harper A. M., Deshmukh V. D., Rowan J. O., Jennett W. B. The influence of sympathetic nervous activity on cerebral blood flow. Arch Neurol. 1972 Jul;27(1):1–6. doi: 10.1001/archneur.1972.00490130003001. [DOI] [PubMed] [Google Scholar]
  8. Harris R. J., Bayhan M., Branston N. M., Watson A., Symon L. Modulation of the pathophysiology of primate focal cerebral ischaemia by indomethacin. Stroke. 1982 Jan-Feb;13(1):17–24. doi: 10.1161/01.str.13.1.17. [DOI] [PubMed] [Google Scholar]
  9. Hart M. N. Morphometry of brain parenchymal vessels following subarachnoid hemorrhage. Stroke. 1980 Nov-Dec;11(6):653–655. doi: 10.1161/01.str.11.6.653. [DOI] [PubMed] [Google Scholar]
  10. Hayakawa T., Waltz A. G. Experimental subarachnoid hemorrhage from a middle cerebral artery. Neurologic deficits, intracranial pressures, blood pressures, and pulse rates. Stroke. 1977 Jul-Aug;8(4):421–426. doi: 10.1161/01.str.8.4.421. [DOI] [PubMed] [Google Scholar]
  11. Herz D. A., Baez S., Shulman K. Pial microcirculation in subarachnoid hemorrhage. Stroke. 1975 Jul-Aug;6(4):417–424. doi: 10.1161/01.str.6.4.417. [DOI] [PubMed] [Google Scholar]
  12. Jakubowski J., Bell B. A., Symon L., Zawirski M. B., Francis D. M. A primate model of subarachnoid hemorrhage: change in regional cerebral blood flow, autoregulation carbon dioxide reactivity, and central conduction time. Stroke. 1982 Sep-Oct;13(5):601–611. doi: 10.1161/01.str.13.5.601. [DOI] [PubMed] [Google Scholar]
  13. Kapp J., Mahaley M. S., Jr, Odom G. L. Cerebral arterial spasm. 2. Experimental evaluation of mechanical and humoral factors in pathogenesis. J Neurosurg. 1968 Oct;29(4):339–349. doi: 10.3171/jns.1968.29.4.0339. [DOI] [PubMed] [Google Scholar]
  14. Klose H. J., Volger E., Brechtelsbauer H., Heinich L., Schmid-Schönbein H. Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation. Pflugers Arch. 1972;333(2):126–139. doi: 10.1007/BF00586912. [DOI] [PubMed] [Google Scholar]
  15. Kuyama H., Fujimoto S., Nishimoto K., Ninomiya K., Akioka T., Matsumoto A., Nishimoto A. [Measurement of regional cerebral blood volume by photoelectric method (author's transl)]. Neurol Med Chir (Tokyo) 1978 Oct;18(9 Pt 2):655–664. doi: 10.2176/nmc.18pt2.655. [DOI] [PubMed] [Google Scholar]
  16. LANGFITT T. W., WEINSTEIN J. D., KASSELL N. F. CEREBRAL VASOMOTOR PARALYSIS PRODUCED BY INTRACRANIAL HYPERTENSION. Neurology. 1965 Jul;15:622–641. doi: 10.1212/wnl.15.7.622. [DOI] [PubMed] [Google Scholar]
  17. Marshall L. F., Bruce D. A., Graham D. I., Langfitt T. W. Alterations in behavior, brain electrical activity, cerebral blood flow, and intracranial pressure produced by triethyl tin sulfate induced cerebral edema. Stroke. 1976 Jan-Feb;7(1):21–25. doi: 10.1161/01.str.7.1.21. [DOI] [PubMed] [Google Scholar]
  18. Martins A. N., Doyle T. F., Newby N., Kobrine A. I., Ramirez A. The effect of a simulated subarachnoid hemorrhage on cerebral blood flow in the monkey. Stroke. 1975 Nov-Dec;6(6):664–672. doi: 10.1161/01.str.6.6.664. [DOI] [PubMed] [Google Scholar]
  19. McQueen J. D., Jelsma L. F. Intracranial hypertension. Cerebrospinal fluid pressure rises following intracisternal infusions of blood components in dogs. Arch Neurol. 1967 May;16(5):501–508. doi: 10.1001/archneur.1967.00470230053007. [DOI] [PubMed] [Google Scholar]
  20. Nagai H., Suzuki Y., Sugiura M., Noda S., Mabe H. Experimental cerebral vasospasm. 1: Factors contributing to early spasm. J Neurosurg. 1974 Sep;41(3):285–292. doi: 10.3171/jns.1974.41.3.0285. [DOI] [PubMed] [Google Scholar]
  21. Osaka K. Prolonged vasospasm produced by the breakdown products of erythrocytes. J Neurosurg. 1977 Sep;47(3):403–411. doi: 10.3171/jns.1977.47.3.0403. [DOI] [PubMed] [Google Scholar]
  22. Pasztor E., Symon L., Dorsch N. W., Branston N. M. The hydrogen clearance method in assessment of blood flow in cortex, white matter and deep nuclei of baboons. Stroke. 1973 Jul-Aug;4(4):556–567. doi: 10.1161/01.str.4.4.556. [DOI] [PubMed] [Google Scholar]
  23. Peterson E. W., Cardoso E. R. The blood-brain barrier following experimental subarachnoid hemorrhage. Part 1: Response to insult caused by arterial hypertension. J Neurosurg. 1983 Mar;58(3):338–344. doi: 10.3171/jns.1983.58.3.0338. [DOI] [PubMed] [Google Scholar]
  24. Saito I., Ueda Y., Sano K. Significance of vasospasm in the treatment of ruptured intracranial aneurysms. J Neurosurg. 1977 Sep;47(3):412–429. doi: 10.3171/jns.1977.47.3.0412. [DOI] [PubMed] [Google Scholar]
  25. Shigeno T., Fritschka E., Brock M., Schramm J., Shigeno S., Cervoś-Navarro J. Cerebral edema following experimental subarachnoid hemorrhage. Stroke. 1982 May-Jun;13(3):368–379. doi: 10.1161/01.str.13.3.368. [DOI] [PubMed] [Google Scholar]
  26. Symon L. An experimental study of traumatic cerebral vascular spasm. J Neurol Neurosurg Psychiatry. 1967 Dec;30(6):497–505. doi: 10.1136/jnnp.30.6.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Symon L., Branston N. M., Chikovani O. Ischemic brain edema following middle cerebral artery occlusion in baboons: relationship between regional cerebral water content and blood flow at 1 to 2 hours. Stroke. 1979 Mar-Apr;10(2):184–191. doi: 10.1161/01.str.10.2.184. [DOI] [PubMed] [Google Scholar]
  28. Symon L., Hargadine J., Zawirski M., Branston N. Central conduction time as an index of ischaemia in subarachnoid haemorrhage. J Neurol Sci. 1979 Dec;44(1):95–103. doi: 10.1016/0022-510x(79)90227-2. [DOI] [PubMed] [Google Scholar]
  29. Symon L., Pasztor E., Branston N. M. The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons. Stroke. 1974 May-Jun;5(3):355–364. doi: 10.1161/01.str.5.3.355. [DOI] [PubMed] [Google Scholar]
  30. Tomita M., Gotoh F., Sato T., Amano T., Tanahashi N., Tanaka K., Yamamoto M. Photoelectric method for estimating hemodynamic changes in regional cerebral tissue. Am J Physiol. 1978 Jul;235(1):H56–H63. doi: 10.1152/ajpheart.1978.235.1.H56. [DOI] [PubMed] [Google Scholar]
  31. Trojanowski T. Blood-brain barrier changes after experimental subarachnoid haemorrhage. Acta Neurochir (Wien) 1982;60(1-2):45–54. doi: 10.1007/BF01401749. [DOI] [PubMed] [Google Scholar]
  32. Umansky F., Kaspi T., Shalit M. N. Regional cerebral blood flow in the acute stage of experimentally induced subarachnoid hemorrhage. J Neurosurg. 1983 Feb;58(2):210–216. doi: 10.3171/jns.1983.58.2.0210. [DOI] [PubMed] [Google Scholar]
  33. Voldby B., Enevoldsen E. M. Intracranial pressure changes following aneurysm rupture. Part 2: associated cerebrospinal fluid lactacidosis. J Neurosurg. 1982 Feb;56(2):197–204. doi: 10.3171/jns.1982.56.2.0197. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES