Abstract
The evolution of the transfer RNA (tRNA) molecule is controversial but embeds the history of protein biosynthesis, the genetic code, and the origins of diversified life. A new phylogenetic method based on RNA structure that we developed provides new lines of evidence to support the genome tag hypothesis and confirms that the ‘top half of tRNA is more ancient than the ‘bottom half Timelines of amino acid charging function generated from constraint analyses showed that selenocysteine, tyrosine, serine, and leucine specificities were ancient, while those related to asparagine, methionine, and arginine were more recent. The timelines also uncovered an early role of the second and then first codon bases, identified codons for alanine and proline as the most ancient, and revealed important evolutionary take-overs related to the loss of the long variable arm of tRNA. Furthermore, organismal timelines showed Archaea was the oldest superkingdom, followed by viruses, and superkingdoms Eukarya and Bacteria in that order, supporting conclusions from recent phylogenomic studies of protein architecture. Strikingly, results showed that the origin of viruses was not only ancient but was linked to Archaea, supporting the notion that the archaeal lineage is the most ancient on earth and its origin predated diversification of tRNA function and specificity.
Keywords: tRNA, secondary structure, Archaea, Bacteria, Eukarya, viruses, genetic code, amino acids charging, selenocysteine, phylogenetics
Full Text
The Full Text of this article is available as a PDF (862.2 KB).
References
- 1.Eigen M., Winkler-Oswatitsch R., and Dress A. (1988) Statistical geometry in sequence space: a method of quantitative comparative sequence analysis. Proc. Natl. Acad. Sci. USA, 85, 5913–5917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Eigen M., Lindemann B. F., Tietze M., Winkler-Oswatitsch R., Dress A., and von Haeseler A. (1989) How old is the genetic code? Science, 244, 673–679. [DOI] [PubMed] [Google Scholar]
- 3.Fitch W. M., and Upper K. (1987) The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harbor Symp. Quant. Biol., 52, 759–767. [DOI] [PubMed] [Google Scholar]
- 4.Di Giulio M. (1994) The phylogeny of tRNA molecules and the origin of the genetic code. Origins Life Evol. B., 24, 425–434. [DOI] [PubMed] [Google Scholar]
- 5.Rodin S., Ohno S., and Rodin A. (1993) Transfer RNAs with complementary anticodons: could they reflect early evolution of discriminative genetic code adaptors? Proc. Natl. Acad. Sci. USA, 90, 4723–4727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Rodin S., Rodin A., and Ohno S. (1996) The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc. Natl. Acad. Sci. USA, 93, 4537–4542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Rodin S. N., and Rodin A. S. (2006) Origin of the genetic code: first aminoacyl-tRNA systheses could replace isofunctional ribozymes when only the second base of codons was established. DNA Cell Biol., 25, 365–375. [DOI] [PubMed] [Google Scholar]
- 8.Holmquist R., Jukes T. H., and Pangburn S. (1973) Evolution of transfer RNA. J. Mol. Biol., 78, 91–116. [DOI] [PubMed] [Google Scholar]
- 9.Sprinzl M. (1983) Phylogenetic information derived from tRNA sequence data. Proteins and Nucleic Acids in Plant Systematics, pp. 63–82. Jensen U., and Fairbrothers D. E. (eds.), Springer-Verlag, Berlin, Heidelberg, Germany. [Google Scholar]
- 10.Higgs P. G., Jameson D., Jow H., and Rattray M. (2003) The evolution of tRNA-Leu genes in animal mitochondrial genomes. J. Mol. Evol., 57, 435–445. [DOI] [PubMed] [Google Scholar]
- 11.Caetano-Anollés G. (2002) Evolved RNA secondary structure and the rooting of the universal tree of life. J. Mol. Evol., 54, 333–345. [DOI] [PubMed] [Google Scholar]
- 12.Caetano-Anollés G. (2002) Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res., 30, 2575–2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Sun F.-J., and Caetano-Anollés G. (2008) The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J. Mol. Evol., 66, 21–35. [DOI] [PubMed] [Google Scholar]
- 14.Sun F.-J., and Caetano-Anollés G. (2008) Evolutionary patterns in the sequence and structure of transfer RNA: early origins of Archaea and viruses. PLoS Comput. Biol., 4, e1000018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Pollock D. (2003) The Zuckerkandl Prize: structure and evolution. J. Mol. Evol., 56, 375–376. [Google Scholar]
- 16.Sim F.-J., Fleurdépine S., Bousquet-Antonelli C., Caetano-Anollés G., and Deragon J.-M. (2007) Common evolutionary trends for SINE RNA structures. Trends Genet., 23, 26–33. [DOI] [PubMed] [Google Scholar]
- 17.Caetano-Anollés G. (2005) Grass evolution inferred from chromosomal rearrangements and geometrical and statistical features in RNA structure. J. Mol. Evol., 60, 635–652. [DOI] [PubMed] [Google Scholar]
- 18.Wang M., Yafremava L. S., Caetano-Anollés D., Mittenthal J. E., and Caetano-Anollés G. (2007) Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res., 17, 1572–1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Schultes E. A., Hraber P. T., and LaBean T. H. (1999) Estimating the contributions of selection and self-organization in RNA secondary structure. J. Mol. Evol., 49, 76–83. [DOI] [PubMed] [Google Scholar]
- 20.Swofford D. L. (2003) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts. [Google Scholar]
- 21.Ashby W. R. (1956) An introduction to cybernetics. Chapman and Hall, London. 295 p. [Google Scholar]
- 22.Doyle J. A. (2006) Seed ferns and the origin of angiosperms. J. Torrey Bot. Soc., 133, 169–209. [Google Scholar]
- 23.Caetano-Anollés G., Kim H. S., and Mittenthal J. E. (2007) The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc. Natl. Acad. Sci. USA, 104, 9358–9363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Szathmáry E. (1999) The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet., 15, 223–229. [DOI] [PubMed] [Google Scholar]
- 25.Weiner A. M., and Maizels N. (1987) tRNA-like structures tag the 3’ ends of genomic RNA moleculesfor replication: implications for the origin of protein synthesis. Proc. Natl. Acad. Sci. USA, 84, 7383–7387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Maizels N., and Weiner A. M. (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc. Natl. Acad. Sci. USA, 91, 6729–6734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Ambrogelly A., Palioura S., and Söll D. (2007) Natural expansion of the genetic code. Nat. Chem. Biol., 3, 29–35. [DOI] [PubMed] [Google Scholar]
- 28.Trifonov E. N. (2004) The triplet code from first principles. J. Biomol. Struc. Dynamics, 22, 1–11. [DOI] [PubMed] [Google Scholar]
- 29.Miller S. L. (1987) Which organic compounds could have occurred on the prebiotic earth? Cold Spring Harbor Symp. Quant. Biol., 52, 17–27. [DOI] [PubMed] [Google Scholar]
- 30.Jordan I. K., Kondrashov F. A., Adzhubei I. A., Wolf Y. I., Koonin E. V., Kondrashov A. S., and Sunyaev S. (2005) A universal trend of amino acid gain and loss in protein evolution. Nature, 433, 633–638. [DOI] [PubMed] [Google Scholar]
- 31.Brooks D. J., Fresco J. R., Lesk A. M., and Singh M. (2002) Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code. Mol. Biol. Evol., 19, 1645–1655. [DOI] [PubMed] [Google Scholar]
- 32.Fournier G. P., and Gogarten J. P. (2007) Signature of a primitive genetic code in ancient protein lineages. J. Mol. Evol., 65, 425–436. [DOI] [PubMed] [Google Scholar]
- 33.Crick F. H. C. (1968) The origin of the genetic code. J. Mol. Biol., 38, 367–379. [DOI] [PubMed] [Google Scholar]
- 34.Wong J. T. (1975) A coevolution theory of the genetic code. Proc. Natl. Acad. Sci. USA, 72, 1909–1912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Wong J. T. (1981) Coevolution of the genetic code and amino acids biosynthesis. Trends Biochem. Sci., 6, 33–36. [Google Scholar]
- 36.Di Giulio M. (1995) The phylogeny of tRNAs seems to confirm the predictions of the coevolution theory of the origin of the genetic code. Origins Life Evol. B., 25, 549–564. [DOI] [PubMed] [Google Scholar]
- 37.Di Giulio M. (2004) The origin of the tRNA molecule: implication for the origin of protein synthesis. J. Theor Biol., 226, 89–93. [DOI] [PubMed] [Google Scholar]
- 38.Chaley M. B., Korotkov E. V., and Phoenix D. A. (1999) Relationships among isoacceptor tRNAs seems to support the coevolution theory of the origin of the genetic code. J. Mol. Evol., 48, 168–177. [DOI] [PubMed] [Google Scholar]
- 39.Amirnovin R. (1997) An analysis of the metabolic theory of the origin of the genetic code. J. Mol. Evol., 44, 473–476. [DOI] [PubMed] [Google Scholar]
- 40.Ronneberg T. A., Landweber L. F., and Freeland S. J. (2000) Testing a biosynthetic theory of the genetic code: Fact or artifact? Proc. Natl. Acad. Sci. USA, 97, 13690–13695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Zuckerkandl E., Derancourt J., and Vogel H. (1971) Mutational trends and random processes in the evolution of informational macromolecules. J. Mol. Biol., 59, 473–490. [DOI] [PubMed] [Google Scholar]
- 42.Brooks D. J., Fresco J. R., and Singh M. (2004) A novel method for estimating ancestral amino acid composition and its application to proteins of the Last Universal Ancestor. Bioinformatics, 20, 2251–2257. [DOI] [PubMed] [Google Scholar]
- 43.Lazcano A., and Miller S. L. (1999) On the origin of metabolic pathways. J. Mol. Evol., 49, 424–431. [PubMed] [Google Scholar]
- 44.Orgel L. E. (2003) Some consequences of the RNA world hypothesis. Orig. Life Evol. Biosph., 33, 211–218. [DOI] [PubMed] [Google Scholar]
- 45.Yarus M (1989) Specificity of Arginine binding by the Tetrahymena intron. Biochemistry, 28, 980–988. [DOI] [PubMed] [Google Scholar]
- 46.McClain W. H. (1993) tRNA identity. FASEB J., 7, 72–78. [DOI] [PubMed] [Google Scholar]
- 47.Meyer F., Schmidt H. J., Plumper E., Hasilik A., Mersmann G., Meyer H. E., Engstrom A., and Heckmann K. (1991) UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus. Proc. Natl. Acad. Sci. USA, 88, 3758–3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Lovett P. S., Ambulos N. P. Jr., Mulbry W., Noguchi N., and Rogers E. J. (1991) UGA can be decoded as tryptophan at low efficiency in Bacillus subtilis. J. Bacteriol., 173, 1810–1812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Osawa S., Jukes T. H., Watanabe K., and Muto A. (1992) Recent evidence for evolution of the genetic code. Microbiol. Rev., 56, 229–264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Watanabe K., and Osawa S. (1995) tRNA sequences and variations in the genetic code. tRNA: Structure, Biosynthesis, and Function, pp. 225–250. Söll D., and RajBhandary U. L. (eds.), ASM Press, Washington, DC. [Google Scholar]
- 51.Weiner A. M., and Weber K. (1973) A single UGA codon functions as a natural termination signal in the coliphage Qb coat protein cistron. J. Mol. Biol., 80, 837–855. [DOI] [PubMed] [Google Scholar]
- 52.Leinfelder W., Zehelein E., Mandrand-Berthelot M. A., and Bock A. (1988) Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature, 331, 723–725. [DOI] [PubMed] [Google Scholar]
- 53.Böck A., Forchhammer K., Heider J., and Baron C. (1991) Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem. Sci., 16, 463–467. [DOI] [PubMed] [Google Scholar]
- 54.Zhang Y., and Gladyshev V. N. (2007) High content of proteins containing 21st and 22nd amino acids, selenocysteine and pyrrolysine, in a symbiotic delta-proteobacterium of gutless worm Olavius algarvensis. Nucleic Acids Res., 35, 4952–4963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Zhang Y., Romero H., Salinas G., and Gladyshev V. N. (2006) Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Genome Biol., 7, R94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Gladyshev V. N., and Kryukov G. V. (2001) Evolution of selenocysteine-containing proteins: Significance of identification and functional characterization of selenoproteins. BioFactors, 14, 87–92. [DOI] [PubMed] [Google Scholar]
- 57.Srinivasan G., James C. M., and Krzycki J. A. (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science, 296, 1459–1462. [DOI] [PubMed] [Google Scholar]
- 58.Nirenberg M., Caskey T., Marshall R., Brimacombe R., Kellogg D., Doctor B., Hatfield D., Levin J., Rottman F., Pestka S., Wilcox M., and Anderson F. (1966) The RNA code and protein synthesis. Cold Spring Harbor Symp. Quant. Biol., 31, 11–24. [DOI] [PubMed] [Google Scholar]
- 59.Rodin S. N., and Rodin A. S. (2008) On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity, 100, 341–355. [DOI] [PubMed] [Google Scholar]
- 60.Trifonov E. N., and Bettecken T. (1997) Sequence fossils, triplet expansion, and reconstruction of earliest codons. Gene, 205, 1–6. [DOI] [PubMed] [Google Scholar]
- 61.Woese C. R., Dugre D. H., Dugre S. A., Kondo M., and Saxinger W. C. (1966) On the fundamental nature and evolution of the genetic code. Cold Spring Harbor Symp. Quant. Biol., 31, 723–736. [DOI] [PubMed] [Google Scholar]
- 62.Woese C. R., Kandier O., and Wheelis M. L. (1990) Towards a natural system of organisms: proposal for domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA, 95, 6854–6859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Delsuc F., Brinkmann H., and Philippe H. (2005) Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet., 6, 361–375. [DOI] [PubMed] [Google Scholar]
- 64.Doolittle R. F. (2005) Evolutionary aspects of whole-genome biology. Curr Opin. Struct. Biol., 15, 248–253. [DOI] [PubMed] [Google Scholar]
- 65.Woese C. R. (1998) The universal ancestor. Proc. Natl. Acad. Sci. USA, 95, 6854–6859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Penny D., and Poole A. (1999) The nature of the last universal common ancestor. Curr. Opin. Genet. Dev., 9, 672–677. [DOI] [PubMed] [Google Scholar]
- 67.Xue H., Tong K.-L., Marck C., Grosjean H., and Wong T.-F. (2003) Transfer RNA paralogs: evidence for genetic code-amino acid biosynthesis coevolution and an archaeal root of life. Gene, 310, 59–66. [DOI] [PubMed] [Google Scholar]
- 68.Xue H., Ng S.-K., Tong K.-L., and Wong T.-F. (2005) Congruence of evidence for a Methanopyrus-proximal root of life based on transfer RNA and aminoacyl-tRNA synthetase genes. Gene, 360, 120–130. [DOI] [PubMed] [Google Scholar]
- 69.Wong T.-F., Chen J., Mat W.-K., Ng S.-K., and Xue H. (2007) Polyphasic evidence delineating the root of life and roots of biological domains. Gene, 403, 39–52. [DOI] [PubMed] [Google Scholar]
- 70.Di Giulio M. (2007) The tree of life might be rooted in the branch leading to Nanoarchaeota. Gene, 401, 108–113. [DOI] [PubMed] [Google Scholar]
- 71.Di Giulio M. (2006) Nanoarchaeum equitans is a living fossil. J. Theor. Biol., 242, 257–260. [DOI] [PubMed] [Google Scholar]
- 72.Di Giulio M. (2007) The evidence that the tree life is not rooted within the Archaea is unreliable: A reply to Skophammer et al. Gene, 394, 105–106. [DOI] [PubMed] [Google Scholar]
- 73.Skophammer R. G., Herbold C. W., Rivera M. C., Servin J. A., and Lake J. A. (2006) Evidence that the root of the tree of life is not within the Archaea. Mol. Biol. Evol., 23, 1648–1651. [DOI] [PubMed] [Google Scholar]
- 74.Caetano-Anollés G., Sun F.-J., Wang M., Yafremava L. S., Harish A., Kim H. S., Knudsen V., Caetano-Anollés D., and Mittenthal J. E. (2008) Origins and evolution of modern biochemistry: insights from genomes and molecular structure. Front. Biosci., 13, 5212–5240. [DOI] [PubMed] [Google Scholar]
- 75.Bamford D. H. (2003) Do viruses form lineages across different domains of life? Res. Microbiol., 154, 231–236. [DOI] [PubMed] [Google Scholar]
- 76.Prangishvili D., Forterre P., and Garrett R. A. (2006) Viruses of the Archaea: a unifying view. Nat. Rev. Microbiol., 4, 837–848. [DOI] [PubMed] [Google Scholar]
- 77.Forterre P., Filé J., and Myllykallio H. (2004) Origin and evolution of DNA and DNA replication machineries. In: Ribas de Pouplana L. (ed.), The genetic code and the origin of Life, pp. 145–168. Springer, New York. [Google Scholar]
- 78.Luria S. E., and Darnell J. E. Jr. (1967) General virology. John Wiley and Sons, New York. 512 p. [Google Scholar]
- 79.Bandea C. I. (1983) A new theory on the origin and the nature of viruses. J. Theor. Biol., 105, 591–602. [DOI] [PubMed] [Google Scholar]
- 80.Hendrix R. W., Lawrence J. G., Hatfull G. F., and Casjens S. (2000) The origins and ongoing evolution of viruses. Trends Microbiol., 8, 504–508. [DOI] [PubMed] [Google Scholar]
- 81.Forterre P. (2003) The great virus comeback-from an evolutionary perspective. Res. Microbiol., 154, 223–225. [DOI] [PubMed] [Google Scholar]