Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;90(1):1–14. doi: 10.3184/003685007780440530

Patho-Biotechnology; Using Bad Bugs to Make Good Bugs Better

Royd Sleator 1,, Colin Hill 2
PMCID: PMC10361160  PMID: 17455762

Abstract

Given the increasing commercial and clinical relevance of probiotic cultures, improving their stress tolerance profile and ability to overcome the physio-chemical defences of the host is an important biological goal. Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, interact with the immune system and interfere with essential host systems. We coin the term ‘patho-biotechnology’ to describe the exploitation of these valuable traits in biotechnology and biomedicine. This approach shows promise for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications as well as the development of novel vaccine and drug delivery platforms.

Keywords: patho-biotechnology, probiotics, pathogen, Listeria, virulence factor, stress, infection, drug delivery, vaccination

Full Text

The Full Text of this article is available as a PDF (387.2 KB).

References

  • 1.Sleator R. D., and Hill C. (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev., 26, 49–71. [DOI] [PubMed] [Google Scholar]
  • 2.Foster J. W., and Spector M. P. (1995) How Salmonella survive against the odds. Annu. Rev. Microbiol., 49, 145–174. [DOI] [PubMed] [Google Scholar]
  • 3.Coote J. G. (2001) Environmental sensing mechanisms in Bordetella. Adv. Microbiol. Physiol., 44, 141–181. [DOI] [PubMed] [Google Scholar]
  • 4.Murphy C., Carroll C., and Jordan K. N. (2006) Environmental survival mechanisms of the foodborne pathogen. Campylobacter jejuni. J. Appl. Microbiol., 100, 623–632. [DOI] [PubMed] [Google Scholar]
  • 5.Sleator R. D., and Hill C. (2006) Pathobiotechnology; using bad bugs to do good things. Curr. Opin. Biotechnol., 17, 211–216. [DOI] [PubMed] [Google Scholar]
  • 6.Roland K. L., Tinge S. A., Killeen K. P., and Kochi S. K. (2005) Recent advances in the development of live, attenuated bacterial vectors. Curr. Opin. Mol. Ther., 1, 62–72. [PubMed] [Google Scholar]
  • 7.Zhao X., Li Z., Gu B., and Frankel F. R. (2005) Pathogenicity and immunogenicity of a vaccine strain of Listeria monocytogenes that relies on a suicide plasmid to supply an essential gene product. Infect. Immunpl., 73, 5789–5798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Li Z., Zhao X., Higgins D. E., and Frankel F. R. (2005) Conditional lethality yields a new vaccine strain of Listeria monocytogenes for the induction of cell-mediated immunity. Infect. Immunol., 73, 5065–5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Brockstedt D. G., Giedlin M. A., Leong M. L., Bahjat K. S., Gao Y., Luckett W., Liu W., Cook D. N., Portnoy D. A., and Dubensky T. W. Jr. (2004) Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc. Natl. Acad. Sci. USA, 101, 13832–13837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Dietrich G., Viret J. F., and Gentschev I. (2003) Haemolysin A and listeriolysin–two vaccine delivery tools for the induction of cell-mediated immunity. Int. J. Parasitol., 33, 495–505. [DOI] [PubMed] [Google Scholar]
  • 11.Saito G., Amidon G. L., and Lee K. D. (2003) Enhanced cytosolic delivery of plasmid DNA by a sulfhydryl-activatable listeriolysin O/protamine conjugate utilizing cellular reducing potential. Gene Ther., 10, 72–83. [DOI] [PubMed] [Google Scholar]
  • 12.Stier E. M., Mandai M., and Lee K. D. (2005) Differential cytosolic delivery and presentation of antigen by listeriolysin O-liposomes to macrophages and dendritic cells. Mol. Pharm., 2, 74–82. [DOI] [PubMed] [Google Scholar]
  • 13.Shahidi F., and Han X. Q. (1993) Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr., 33, 501–547. [DOI] [PubMed] [Google Scholar]
  • 14.Maa Y. F., and Prestrelski S. J. (2000) Biopharmaceutical powders: particle formation and formulation considerations. Curr. Pharm. Biotechnol., 1, 283–302. [DOI] [PubMed] [Google Scholar]
  • 15.Gahan C. G., and Hill C. (2005) Gastrointestinal phase of Listeria monocytogenes infection. J. Appl. Microbiol., 98, 1345–1353. [DOI] [PubMed] [Google Scholar]
  • 16.Zoetendal E. G., Vaughan E. E., and de Vos W. M. (2006) A microbial world within us. Mol. Microbiol., 59, 1639–1650. [DOI] [PubMed] [Google Scholar]
  • 17.Kuipers O. P. Genomics for food biotechnology: prospects of the use of high throughput technologies for the improvement of food microorganisms. Curr. Opin. Biotechnol., 10, 511–516. [DOI] [PubMed] [Google Scholar]
  • 18.Tlaskalova-Hogenova H., Stepankova R., Hudcovic T., Tuckova L., Cukrowska B., Lodinova-Zadnikova H., Rossmann P., Bartova J., Sokol D., Funda D. P., Borovska D., Rehakova Z., Sinkora J., Hofman J., Drastich P., and Kokesova A. (2004) Commensal bacteria (normal microflora) mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol. Lett., 93, 97–108. [DOI] [PubMed] [Google Scholar]
  • 19.Shanahan F. (2005) The host-microbe interface within the gut. Best Pract. Res. Clin. Gastroenterol., 16, 915–931. [DOI] [PubMed] [Google Scholar]
  • 20.Backhed F., Ley R. E., Sonnenburg J. L., Peterson D. A., and Gordon J. I. (2005) Host-bacterial mutualism in the human intestine. Science, 307, 1915–1920. [DOI] [PubMed] [Google Scholar]
  • 21.Fuller R. (1989) Probiotics in man and animals. J. Appl. Bacteriol., 66, 365–378. [PubMed] [Google Scholar]
  • 22.Rastall R. A. (2004) Bacteria in the gut: friends and foes and how to alter the balance. J. Nutr., 134, 2022S–2026S. [DOI] [PubMed] [Google Scholar]
  • 23.Amital H., Gilburd B., and Shoenfeld Y. (2003) Intelligent nutrition: health-promoting mechanisms of probiotics. Isr. Med. Assoc. J., 5, 812–813. [PubMed] [Google Scholar]
  • 24.O'Hara A. M., O'Regan P., Fanning A., O'Mahony C., Macsharry J., Lyons A., Bienenstock J., O'Mahony L., and Shanahan F. (2006) Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius. Immunology, 118, 202–215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Chen C. C., and Walker W. A. (2005) Probiotics role in clinical disease states. Adv. Pediatr., 52, 77–113. [DOI] [PubMed] [Google Scholar]
  • 26.Fedorak R. N., and Modsen K. L. (2004) Probiotics and prebiotics in gastrointestinal disorders. Curr. Opin. Gastroenterol., 20, 146–155. [DOI] [PubMed] [Google Scholar]
  • 27.Huebner E. S., and Surawicz C. M. (2006) Probiotics in the prevention and treatment of gastrointestinal infections. Gastroenterol. Clin. North Am., 35, 355–365. [DOI] [PubMed] [Google Scholar]
  • 28.Sheehan V., Sleator R. D., Fitzgerald G., and Hill C. (2006) Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl. Environ. Microbiol., 72, 2170–2177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Seegers J. F. (2002) Lactobacilli as live vaccine delivery vectors: progress and prospects. Trends Biotechnol., 20, 508–515. [DOI] [PubMed] [Google Scholar]
  • 30.Guimarães V. D., Gabriel J. E., Lefèvre F., Cabanes D., Gruss A., Cossart P., Azevedo V., and Langella P. (2005) Internalin-expressing Lactococcus lactis is able to invade small intestine of guinea pigs and deliver DNA into mammalian epithelial cells. Microbes Infect., 7, 836–844. [DOI] [PubMed] [Google Scholar]
  • 31.Hamon M., Bierne H., and Cossart P. (2006) Listeria monocytogenes: a multifaceted model. Nat. Rev. Microbiol., 4, 423–434. [DOI] [PubMed] [Google Scholar]
  • 32.Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P., Chakraborty T., Charbit A., Chetouani F., Couve E., de Daruvar A., Dehoux P., Domann E., Dominguez-Bernal G., Duchaud E., Durant L., Dussurget O., Entian K. D., Fsihi H., Garcia-Del Portillo F., Garrido P., Gautier L., Goebel W., Gomez-Lopez N., Hain T., Hauf J., Jackson D., Jones L. M., Kaerst U., Kreft J., Kuhn M., Kunst F., Kurapkat G., Madueno E., Maitournam A., Mata Vicente J., Ng E., Nedjari H., Nordsiek G., Novella S., de Pablos B., Pérez-Diaz J. C., Purcell R., Remmel B., Rose M., Schlueter T., Simoes N., Tierrez A., Vázquez-Boland J. A., Voss H., Wehland J., and Cossart P. (2001) Comparative genomics of Listeria species. Science, 294, 849–852. [DOI] [PubMed] [Google Scholar]
  • 33.Hain T., Steinweg C., Kuenne C. T., Billion A., Ghai R., Chatterjee S. S., Domann E., Karst U., Goesmann A., Bekel T., Bartels D., Kaiser O., Meyer F., Pulher A., Weisshaar B., Wehland J., Liang C., Dandekar T., Lampidis R., Kreft J., Goebel W., and Charkraborty T. (2006) Whole genome sequence of Listeria welshimeri reveals common reduction with Listeria innocua as compared to Listeria monocytogenes. J. Bacteriol., 188, 7405–7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Gray M. J., Freitag N. E., and Boor K. J. (2006) How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect Immunol., 74, 2505–2512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Lecuit M. (2005) Understanding how Listeria monocytogenes targets and crosses host barriers. Clin. Microbiol. Infect., 11, 430–436. [DOI] [PubMed] [Google Scholar]
  • 36.Sleator R. D., Gahan C. G. M., and Hill C. (2003) A post-genomic appraisal of osmotolerance in Listeria monocytogenes. Appl. Environ. Microbiol., 69, 1–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Krimsky S. (2005) From Asilomar to industrial biotechnology: risks, reductionism and regulation. Sci. Cult. (Lond)., 14, 309–323. [DOI] [PubMed] [Google Scholar]
  • 38.Steidler L., Neirynck S., Huyghebaert N., Snoeck V., Vermeire A., Goddeeris B., Cox E., Remon J. P., and Remaut E. (2003) Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol., 27, 785–789. [DOI] [PubMed] [Google Scholar]
  • 39.Szafranski P., Mello C. M., Sano T., Smith C. L., Kaplan D. L., and Cantor C. R. (1997). A new approach for the containment of micro-organisms: dual control of streptavidin expression by antisense RNA and the T7 transcription system. Proc. Natl. Acad. Sci. USA, 94, 1059–1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Torres B., Jaenecke S., Timmis K. N., Garcia J. L., and Diaz E. (2003) A dual lethal system to enhance containment of recombinant microorganisms. Microbiology, 149, 3595–35601. [DOI] [PubMed] [Google Scholar]
  • 41.Lojo M. M. (1995) Thymine auxotrophy is associated with increased UV sensitivity in Escherichia coli and Bacillus subtilis. Mutant Res., 347, 25–30. [DOI] [PubMed] [Google Scholar]
  • 42.Shanahan S. (2004) Probiotics and the immune response: how much can we expect? J. Pediatr. Gastroenterol. Nutr., 39, S748–8749. [DOI] [PubMed] [Google Scholar]
  • 43.O'Sullivan G. C., Kelly P., O'Halloran S., Collins J. K., Dunne C., and Shanahan F. (2005) Probiotics: an emerging therapy. Curr. Pharm. Des., 11, 3–10. [DOI] [PubMed] [Google Scholar]
  • 44.Amital H., Gilburd B., and Shoenfeld Y. (2003) Intelligent nutrition: health-promoting mechanisms of probiotics. Isr. Med. Assoc. J., 5, 812–813. [PubMed] [Google Scholar]
  • 45.Fedorak R. N., and Modsen K. L. Probiotics and prebiotics in gastrointestinal disorders. Curr. Opin. Gastroenterol., 20, 146–155. [DOI] [PubMed] [Google Scholar]
  • 46.Spiller R. C. (2005) Potential future therapies for irritable bowel syndrome: will disease modifying therapy as opposed to symptomatic control become a reality? Gastroenterol. Clin. North Am., 34, 337–354. [DOI] [PubMed] [Google Scholar]
  • 47.Aslam S., and Musher D. M. (2006) An update on diagnosis, treatment, and prevention of Clostridium difficile-associated disease. Gastroenterol. Clin. North Am., 35, 315–335. [DOI] [PubMed] [Google Scholar]
  • 48.Aslam S., Hamill R. J., and Musher D. M. (2005) Treatment of Clostridium difficile-associated disease: old therapies and new strategies. Lancet Infect. Dis., 5, 549–557. [DOI] [PubMed] [Google Scholar]
  • 49.Sleator R. D., Gahan C. G. M., Abee T., and Hill C. (1999) Identification and disruption of BetL, a secondary glycine betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28. Appl. Environ. Microbiol., 65, 2078–2083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Sleator R. D., Gahan C.G.M., O'Driscoll B., and Hill C. (2000) Analysis of the role of betL in contributing to the growth and survival of Listeria monocytogenes LO28. Int. J. Food Microbiol., 60, 261–268. [DOI] [PubMed] [Google Scholar]
  • 51.Sleator R. D., Wood J. M., and Hill C. (2003) Transcriptional regulation and post-translational activity of the betaine transporter BetL in Listeria monocytogenes is controlled by environmental salinity. J. Bacteriol., 185, 7140–7144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Sleator R. D., Gahan C. G. M., Francis G., O'Beirne D., and Hill C. (2003) Osmolyte uptake in Listeria monocytogenes affects growth and survival in foods and during infection of an animal model. J. Appl. Microbiol., 95, 839–846. [DOI] [PubMed] [Google Scholar]
  • 53.Smiddy M., Sleator R. D., Kelly A., and Hill C. (2004) A role for the compatible solutes glycine betaine and L-carnitine in listerial barotolerance. Appl. Environ. Microbiol., 70, 7555–7557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Smiddy M., O'Gorman L., Sleator R. D., Hill C., and Kelly A. (2000) Greater high-pressure resistance of bacteria in oysters than in broth. Innov. Food Sci. Emerg. Technol., 6, 83–90. [Google Scholar]
  • 55.Wemekamp-Kamphuis H. H., Wouters J. A., Sleator R. D., Gahan C. G. M., Hill C., and Abee T. (2002) Multiple deletion of the osmolyte transporters BetL, Gbu and OpuC of Listeria monocytogenes affects virulence and growth at high osmolarity. Appl. Environ. Microbiol., 68, 4710–4716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Wemekamp-Kamphuis H. H., Sleator R. D., Wouters J. A., Hill C., and Abee T. (2004) Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol., 70, 2912–2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Sleator R. D., Gahan C. G. M., and Hill C. (2001) Identification and disruption of the proBA locus in Listeria monocytogenes: role of proline biosynthesis in salt tolerance and murine infection. Appl. Environ. Microbiol., 67, 2571–2577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Sleator R. D., Gahan C. G. M., and Hill C. (2001) Mutations in the listerial proB gene leading to proline overproduction: effects on salt tolerance and murine infection. Appl. Environ. Microbiol., 67, 4560–4565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Stack H., Sleator R. D., Bowers M., Hill C., and Gahan C. G. M. (2005) HtrA; Stress induction and virulence potential in Listeria monocytogenes. Appl. Environ. Microbiol., 71, 4241–4247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Sleator R. D., Wouters J., Gahan C. G. M., Abee T., and Hill C. (2001) Analysis of the role of OpuC., an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl. Environ. Microbiol., 67, 2692–2698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Hill C., Cotter P., Sleator R. D., and Gahan C. G. M. (2002) Bacterial stress response in Listeria monocytogenes: jumping the hurdles imposed by minimal processing. Int. Dairy J., 12, 273–283. [Google Scholar]
  • 62.Sleator R. D., Wemekamp-Kamphuis H. H., Gahan C. G. M., Hill C., and Abee T. (2005) A PrfA-regulated bile exclusion system (bilE) is a novel virulence factor in Listeria monocytogenes. Mol. Microbiol., 55, 1183–1195. [DOI] [PubMed] [Google Scholar]
  • 63.Begley M., Sleator R. D., Gahan C. G. M., and Hill C. (2005) The contribution of three bile-associated loci (bsh, pva and btlB) to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect. Immunol., 73, 894–904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Portnoy D. A., and Jones S. (1994) The cell biology of Listeria monocytogenes infection (escape from a vacuole). Ann. N. Y. Acad. Sci., 730, 15–25. [DOI] [PubMed] [Google Scholar]
  • 65.Gaillard J. L., Berche P., Frehel C., Gouin E., and Cossart P. (1991) Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell, 65, 1127–1141. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES