Abstract
Delivery of imaging agents and pharmaceutical payloads to the central nervous system (CNS) is essential for efficient diagnosis and treatment of brain diseases. However, therapeutic delivery is often restricted by the blood-brain barrier (BBB), which prevents transport of clinical compounds to their region of interest. This review discusses the methods that have been used to avoid or overcome this barrier, presenting the use of biologically-derived nanomaterial systems as an efficient strategy for the diagnosis and treatment of CNS diseases. Biological nanomaterials have many advantages over synthetic systems, including being biodegradable, biocompatible, easily surface functionalised for conjugation of targeting moieties, and are often able to self-assemble. These abilities are discussed in relation to various systems, including liposomes, dendrimers, and viral nanoparticles.
Keywords: blood-brain barrier, nanomaterials, nanoparticles, central nervous system delivery, receptor-mediated transcytosis, therapeutic delivery, bioconjugation
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
6. References
- 1.Borlongan C.V., Burns J., Tajiri N. et al. (2013) PLoS One, 8, e78490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Jankovic J. (2008) J. Neurol. Neurosurg. Psychiatry, 79, 368–376. [DOI] [PubMed] [Google Scholar]
- 3.Pardridge W. (2006) Curr. Opin. Pharmacol., 6, 494–500. [DOI] [PubMed] [Google Scholar]
- 4.Faraji A.H., and Wipf P. (2009) Bioorg. Med. Chem., 17, 2950–2962. [DOI] [PubMed] [Google Scholar]
- 5.Molino N.M., and Wang S. (2014) Curr. Opin. Biotechnol., 28, 75–82. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Sendelbeck S.L., and Urquhart J. (1985) Brain Res., 328, 251–258. [DOI] [PubMed] [Google Scholar]
- 7.Morrison P.F., and Dendrick R.L. (1986) J. Pharm. Sci., 75, 120–128. [DOI] [PubMed] [Google Scholar]
- 8.Remeš F., Tomáš R., Jindrák V. et al. (2013) J. Neurosurg., 119, 1596–602. [DOI] [PubMed] [Google Scholar]
- 9.Wang L., Zhang J., Yu X. et al. (2017) Eur. J. Hosp. Pharm., 24, 182–184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Blasberg R.G., Patlak C., and Fenstermacher J.D. (1975) J. Pharmacol. Exp. Ther., 195, 73–83. [PubMed] [Google Scholar]
- 11.Hersh D.S., Wadajkar A.S., Roberts N. et al. (2016) Curr. Pharm. Des., 22, 1177–1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Yi X., Manickam D.S., Brynskikh A. et al. (2014) J. Control. Release, 190, 637–663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Neuwelt E.A., Hill S.A., Frenkel E.P. et al. (1981) Cancer Treat. Rep., 65, 39–43. [PubMed] [Google Scholar]
- 14.Erdlenbruch B., Schinkhof C., Kugler W. et al. (2003) Br. J. Pharmacol., 139, 685–694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Treat L.H., McDannold N., Zhang Y. et al. (2012) Ultrasound Med. Biol., 38, 1716–1725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Nadal A., Fuentes E., Pastor J. et al. (1995) Proc. Natl Acad. Sci. USA, 92, 1426–1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Pardridge W.M. (1999) J. Neurovirol., 5, 556–569. [DOI] [PubMed] [Google Scholar]
- 18.Hervé F., Ghinea N., and Scherrmann J. (2008) AAPS J., 10, 455–472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Prabhakarpandian B., Shen M.-C., Nichols J.B. et al. (2013) Lab Chip, 13, 1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Pardridge W.M. (2005) NeuroRX, 2, 3–14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Kageyama T., Nakamura M., Matsuo A. et al. (2000) Brain Res., 879, 115–121. [DOI] [PubMed] [Google Scholar]
- 22.Ohtsuki S., and Terasaki T. (2007) Pharm. Res., 24, 1745–1758. [DOI] [PubMed] [Google Scholar]
- 23.Qin Y., Fan W., Chen H. et al. (2010) J. Drug Target., 18, 536–549. [DOI] [PubMed] [Google Scholar]
- 24.Xie F., Qin Y., Zhang Q. et al. (2012) Int. J. Nanomedicine, 7, 163–175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Gromnicova R., Davies H.A., Sreekanthreddy P. et al. (2013) PLoS One, 8, e81043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Jiang X., Xin H., Ren Q. et al. (2014) Biomaterials, 35, 518–529. [DOI] [PubMed] [Google Scholar]
- 27.Smith K.R., and Borchardt R.T. (1989) Pharm. Res., 6, 466–473. [DOI] [PubMed] [Google Scholar]
- 28.Lu W. (2012) Curr. Pharm. Biotechnol., 13, 2340–2348. [DOI] [PubMed] [Google Scholar]
- 29.Georgieva J., Hoekstra D., and Zuhorn I. (2014) Pharmaceutics, 6, 557–583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Gao K., and Jiang X. (2006) Int. J. Pharm., 310, 213–219. [DOI] [PubMed] [Google Scholar]
- 31.Jones A.R., and Shusta E.V. (2007) Pharm. Res., 24, 1759–1771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Bickel U., Yoshikawa T., and Pardridge W.M. (2001) Adv. Drug Deliv. Rev., 46, 247–279. [DOI] [PubMed] [Google Scholar]
- 33.Shin S.U., Friden P., Moran M. et al. (1995) Proc. Natl Acad. Sci. USA, 92, 2820–2824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Qian Z.M., Li H., Sun H. et al. (2002) Pharmacol. Rev., 54, 561–587. [DOI] [PubMed] [Google Scholar]
- 35.Mishra V., Mahor S., Rawat A. et al. (2006) J. Drug Target., 14, 45–53. [DOI] [PubMed] [Google Scholar]
- 36.Pardridge W.M. (2005) Int. Congr. Ser., 1277, 49–62. [Google Scholar]
- 37.Pardridge W.M., Buciak J.L., and Friden P.M. (1991) J. Pharmacol. Exp. Ther., 259, 66–70. [PubMed] [Google Scholar]
- 38.Song B.-W., Vinters H.V., Wu D. et al. (2002) J. Pharmacol. Exp. Ther., 301, 605–610. [DOI] [PubMed] [Google Scholar]
- 39.Wu D., Song B.-W., Vinters H.V. et al. (2002) J. Drug Target., 10, 239–245. [DOI] [PubMed] [Google Scholar]
- 40.Kurihara A., Deguchi Y., and Pardridge W.M. (1999) Bioconjug. Chem., 10, 502–511. [DOI] [PubMed] [Google Scholar]
- 41.Lyons M.K., Anderson R.E., and Meyer F.B. (1991) Brain Res., 558, 315–320. [DOI] [PubMed] [Google Scholar]
- 42.Lee H.W.A.J., Engelhardt B., Lesley J. et al. (2000) J. Pharmacol. Exp. Ther., 292, 1048–1052. [PubMed] [Google Scholar]
- 43.Shi N., Zhang Y., Zhu C. et al. (2001) Proc. Natl Acad. Sci. USA, 98, 12754–12759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Lee H.J., Zhang Y., Zhu C. et al. (2002) J. Cereb. Blood Flow Metab., 22, 223–231. [DOI] [PubMed] [Google Scholar]
- 45.Friden P.M., Walus L.R., Musso G.F. et al. (1991) Proc. Natl Acad. Sci. USA, 88, 4771–4775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Friden P.M., Olson T.S., Obar R. et al. (1996) J. Pharmacol. Exp. Ther., 278, 1491–1498. [PubMed] [Google Scholar]
- 47.Pardridge W.M. (2015) Expert Opin. Drug Deliv., 12, 207–222. [DOI] [PubMed] [Google Scholar]
- 48.Boado R.J., Zhang Y., Zhang Y. et al. (2008) Biotechnol. Bioeng., 100, 387–396. [DOI] [PubMed] [Google Scholar]
- 49.Boado R.J., and Pardridge W.M. (2009) Drug Metab. Dispos., 37, 2299–2304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Boado R.J., Hui E.K.-W., Lu J.Z. et al. (2010) J. Biotechnol., 146, 84–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Demeule M., Regina A., Che C. et al. (2007) J. Pharmacol. Exp. Ther., 324, 1064–1072. [DOI] [PubMed] [Google Scholar]
- 52.Lillis A.P., Mikhailenko I., and Strickland D.K. (2005) J. Thromb. Haemost., 3, 1884–1893. [DOI] [PubMed] [Google Scholar]
- 53.Demeule M., Currie J.-C., Bertrand Y. et al. (2008) J. Neurochem., 106, 1534–1544. [DOI] [PubMed] [Google Scholar]
- 54.Wagner S., Zensi A., Wien S.L. et al. (2012) PLoS One, 7, e32568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Tamaru M., Akita H., Kajimoto K. et al. (2014) Int. J. Pharm., 465, 77–82. [DOI] [PubMed] [Google Scholar]
- 56.Xin H., Jiang X., Gu J. et al. (2011) Biomaterials, 32, 4293–4305. [DOI] [PubMed] [Google Scholar]
- 57.Huang S., Li J., Han L. et al. (2011) Biomaterials, 32, 6832–6838. [DOI] [PubMed] [Google Scholar]
- 58.Xin H., Sha X., Jiang X. et al. (2012) Biomaterials, 33, 1673–1681. [DOI] [PubMed] [Google Scholar]
- 59.Xin H., Sha X., Jiang X. et al. (2012) Biomaterials, 33, 8167–8176. [DOI] [PubMed] [Google Scholar]
- 60.Ren J., Shen S., Wang D. et al. (2012) Biomaterials, 33, 3324–3333. [DOI] [PubMed] [Google Scholar]
- 61.Ke W., Shao K., Huang R. et al. (2009) Biomaterials, 30, 6976–6985. [DOI] [PubMed] [Google Scholar]
- 62.Olivier J.-C., Fenart L., Chauvet R. et al. (1999) Pharm. Res., 16, 1836–1842. [DOI] [PubMed] [Google Scholar]
- 63.Elsabahy M., and Wooley K.L. (2012) Chem. Soc. Rev., 41, 2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Owens D.E., and Peppas N.A. (2006) Int. J. Pharm., 307, 93–102. [DOI] [PubMed] [Google Scholar]
- 65.Choyke P.L., and Kobayashi H. (2006) Abdom. Imaging, 31, 224–231. [DOI] [PubMed] [Google Scholar]
- 66.Longmire M., Choyke P.L., and Kobayashi H. (2008) Nanomedicine, 3, 703–717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Li J., Wang X., Zhang T. et al. (2014) Asian J. Pharm. Sci., 10, 81–98. [Google Scholar]
- 68.Zhang N., Wardwell P., and Bader R. (2013) Pharmaceutics, 5, 329–352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Ahmad Z., Shah A., Siddiq M. et al. (2014) RSC Adv., 4, 17028–17038. [Google Scholar]
- 70.Nagarajan R. (2002) Langmuir, 18, 31–38. [Google Scholar]
- 71.Thompson A.K., Couchoud A., and Singh H. (2009) Dairy Sci. Technol., 89, 99–113. [Google Scholar]
- 72.Samad A., Sultana Y., and Aqil M. (2007) Curr. Drug Deliv., 4, 297–305. [DOI] [PubMed] [Google Scholar]
- 73.Micheli M.-R., Bova R., Magini A. et al. (2012) Recent Pat. CNS Drug Discov., 7, 71–86. [DOI] [PubMed] [Google Scholar]
- 74.Schnyder A., and Huwyler J. (2005) NeuroRX, 2, 99–107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Jokerst J.V., Lobovkina T., Zare R.N. et al. (2011) Nanomedicine, 6, 715–728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Rose J.S., Neal J.M., and Kopacz D.J. (2005) Reg. Anesth. Pain Med., 30, 275–285. [DOI] [PubMed] [Google Scholar]
- 77.Du D., Chang N., Sun S. et al. (2014) J. Control. Release, 182, 99–110. [DOI] [PubMed] [Google Scholar]
- 78.Lai F., Fadda A.M., and Sinico C. (2013) Expert Opin. Drug Deliv., 10, 1003–1022. [DOI] [PubMed] [Google Scholar]
- 79.Ko Y.T., Bhattacharya R., and Bickel U. (2009) J. Control. Release, 133, 230–237. [DOI] [PubMed] [Google Scholar]
- 80.Qin J., Zhang R.-X., Li J.-L. et al. (2014) Eur. J. Pharm. Sci., 58, 63–71. [DOI] [PubMed] [Google Scholar]
- 81.Zhang Y., Zhu C., and Pardridge W.M. (2002) Mol. Ther., 6, 67–72. [DOI] [PubMed] [Google Scholar]
- 82.Huwyler J., Wu D., and Pardridge W.M. (1996) Proc. Natl Acad. Sci. USA, 93, 14164–14169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Pardridge W.M. (2003) Methods Enzymol., 373, 507–528. [DOI] [PubMed] [Google Scholar]
- 84.Sebestik J., Niederhafner P., and Jezek J. (2011) Amino Acids, 40, 301–370. [DOI] [PubMed] [Google Scholar]
- 85.Hong S., Bielinska A.U., Mecke A. et al. (2004) Bioconjug. Chem., 15, 774–782. [DOI] [PubMed] [Google Scholar]
- 86.Satija J., Gupta U., and Jain N.K. (2007) Crit. Rev. Ther. Drug Carrier Syst., 24, 257–306. [DOI] [PubMed] [Google Scholar]
- 87.Janaszewska A., Ziemba B., Ciepluch K. et al. (2012) New J. Chem., 36, 350–353. [Google Scholar]
- 88.Klementieva O., Aso E., Filippini D. et al. (2013) Biomacromolecules, 14, 3570–3580. [DOI] [PubMed] [Google Scholar]
- 89.Janaszewska A., Klajnert-Maculewicz B., Marcinkowska M. et al. (2017) Nano Res., 11, 1204–1226. [Google Scholar]
- 90.Mccarthy J.M., Appelhans D., and Rogers M.S. (2013) Prion, 7, 198–202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Supattapone S., Nguyen H.-O.B., Cohen F.E. et al. (1999) Proc. Natl Acad. Sci. USA, 96, 14529–14534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Svenson S., and Tomalia D.A. (2012) Adv. Drug Deliv. Rev., 64, 102–115. [DOI] [PubMed] [Google Scholar]
- 93.Engelberth S.A., Hempel N., and Bergkvist M. (2015) Bioconjug. Chem., 26, 1766–1774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Ouyang L., Pan J., Zhang Y. et al. (2009) Synth. Commun., 39, 4039–4052. [Google Scholar]
- 95.Wu D., and Pardridge W.M. (1999) Proc. Natl Acad. Sci. USA, 96, 254–259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Bickel U., Yoshikawa T., Landaw E.M. et al. (1993) Proc. Natl Acad. Sci. USA, 90, 2618–2622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Rousselle C., Clair P., Smirnova M. et al. (2003) J. Pharmacol. Exp. Ther., 306, 371–376. [DOI] [PubMed] [Google Scholar]
- 98.Liu H., Zhang W., Ma L. et al. (2014) Int. J. Pharm., 476, 1–8. [DOI] [PubMed] [Google Scholar]
- 99.Yu Y.J., and Watts R.J. (2013) Neurotherapeutics, 10, 459–472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Régina A., Demeule M., Ché C. et al. (2009) Br. J. Pharmacol., 155, 185–197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Angiochem Inc. (2017) A phase II, open-label, multi-center study of ANG1005 in patients with recurrent high-grade glioma. https://clinicaltrials.gov [accessed 10 December 2017].
- 102.Loh J.W.E.N., Schneider J., Carter M. et al. (2010) J. Pharm. Sci., 99, 4326–4337. [DOI] [PubMed] [Google Scholar]
- 103.Aljebory A.M., and Alsalman T.M. (2017) Imp. J. Interdiscip. Res., 3, 233–242. [Google Scholar]
- 104.Park J.H., Saravanakumar G., Kim K. et al. (2010) Adv. Drug Deliv. Rev., 62, 28–41. [DOI] [PubMed] [Google Scholar]
- 105.Trapani A., De Giglio E., Cafagna D. et al. (2011) Int. J. Pharm., 419, 296–307. [DOI] [PubMed] [Google Scholar]
- 106.Aktaş Y., Yemisci M., Andrieux K. et al. (2005) Bioconjug. Chem., 16, 1503–1511. [DOI] [PubMed] [Google Scholar]
- 107.Gu J., Al-Bayati K., and Ho E.A. (2017) Drug Deliv. Transl. Res., 7, 497–506. [DOI] [PubMed] [Google Scholar]
- 108.Yildiz I., Shukla S., and Steinmetz N.F. (2011) Curr. Opin. Biotechnol., 22, 901–908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Yildiz I., Lee K.L., Chen K. et al. (2013) J. Control. Release, 172, 568–578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Cohen B.A., Kaloyeros A.E., and Bergkvist M. (2012) J. Porphyr. Phthalocyanines, 16, 47–54. [Google Scholar]
- 111.Douglas T., and Young M. (1998) Nature, 393, 152–155. [Google Scholar]
- 112.Loo L., Guenther R.H., Lommel S.A. et al. (2008) Chem. Commun., 0, 88–90. [DOI] [PubMed] [Google Scholar]
- 113.Narayanan K.B., and Han S.S. (2017) Adv. Colloid Interface Sci., 248, 1–19. [DOI] [PubMed] [Google Scholar]
- 114.Strauss J.H., and Sinsheimer R.L. (1963) J. Mol. Biol., 7, 43–54. [DOI] [PubMed] [Google Scholar]
- 115.Kovacs E.W., Hooker J.M., Romanini D.W. et al. (2007) Bioconjug. Chem., 18, 1140–1147. [DOI] [PubMed] [Google Scholar]
- 116.Toropova K., Basnak G., Twarock R. et al. (2008) J. Mol. Biol., 375, 824–836. [DOI] [PubMed] [Google Scholar]
- 117.Stephanopoulos N., Tong G.J., Hsiao S.C. et al. (2010) ACS Nano, 4, 6014–6020. [DOI] [PubMed] [Google Scholar]
- 118.Cohen B.A., and Bergkvist M. (2013) J. Photochem. Photobiol. B Biol., 121, 67–74. [DOI] [PubMed] [Google Scholar]
- 119.Galaway F.A., and Stockley P.G. (2013) Mol. Pharm., 10, 59–68. [DOI] [PubMed] [Google Scholar]
- 120.ElSohly A.M., Netirojjanakul C., Aanei I.L. et al. (2015) Bioconjug. Chem., 26, 1590–1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Valegård K., Liljas L., Fridborg K. et al. (1990) Nature, 345, 36–41. [DOI] [PubMed] [Google Scholar]
- 122.Ashley C.E., Carnes E.C., Phillips G.K. et al. (2011) ACS Nano, 5, 5729–5745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Curley S.M., Castracane J., Bergkvist M. et al. (2018) MRS Advances, 1–6. 10.1557/adv.2018.357. [DOI]