Abstract
A review is presented of some of the ways in which electron spin resonance (ESR) spectroscopy may be useful to investigate systems of relevance to the environmental sciences. Specifically considered are: quantititave ESR, photo-catalysis for pollution control; sorption and mobility of molecules in zeolites; free radicals produced by mechanical action and by shock waves from explosives; measurement of peroxyl radicals and nitrate radicals in air; determination of particulate matter, polyaromatic hydrocarbons (PAH), soot and black carbon in air; estimation of nitrate and nitrite in vegetables and fruit; lipid-peroxidation by solid particles (silica, asbestos, coal dust); ESR of soils and other biogenic substances: formation of soil organic matter, carbon capture and sequestration (CCS) and no-till farming; detection of reactive oxygen species in the photosynthetic apparatus of higher plants under light stress; molecular mobility and intracellular glasses in seeds and pollen; molecular mobility in dry cotton; characterisation of the surface of carbon black used for chromatography; ESR dating for archaeology and determining seawater levels; measurement of the quality of tea-leaves by ESR; green-catalysts and catalytic media; studies of petroleum (crude oil); fuels; methane hydrate; fuel cells; photovoltaics; source rocks; kerogen; carbonaceous chondrites to find an ESR-based marker for extraterrestrial origin; samples from the Moon taken on the Apollo 11 and Apollo 12 missions to understand space-weathering; ESR studies of organic matter in regard to oil and gas formation in the North Sea; solvation by ionic liquids as green solvents, ESR in food and nutraceutical research.
Keywords: quantititave ESR, photo-catalysis, zeolites, explosives, peroxyl radicals, nitrate radicals, particulate matter, PAH, asbestos, coal dust, photosynthesis, fuel cells, photovoltaics, kerogen, carbonaceous chondrites, nutraceutical research
Full Text
The Full Text of this article is available as a PDF (636.7 KB).
References
- 1.Rhodes C.J. (2011) Sci. Prog., 94, 16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Yordanov N.D., and Lubenova S. (2000) Anal. Chim. Acta, 403, 305. [Google Scholar]
- 3.Rhodes C.J., Tran T.T., and Morris H. (2004) Spectrochim. Acta, Part A, 60, 1401. [DOI] [PubMed] [Google Scholar]
- 4.Yordanov N.D., Lubenova S., and Sokolova S. (2001) Atmos. Environ., 35, 827. [Google Scholar]
- 5.Yordanov N.D., Mladenova B., and Petkov P. (2002) Anal. Chim. Acta, 453, 155. [Google Scholar]
- 6.Yordanov N.D., and Lubenova S. (2000) Anal. Chim. Acta, 403, 305. [Google Scholar]
- 7.Fox M.A., and Dulay M.T. (1993) Chem. Rev., 93, 341. [Google Scholar]
- 8.Serone N. (1994) Res. Chem. Intermed., 20, 953. [Google Scholar]
- 9.Ollis D.F., and Al-Ekabi H. (eds), Photocatalytic purification of water and air (1993) Elsevier, Amsterdam. [Google Scholar]
- 10.Bahnemann D. (2004) Solar Energy, 77, 445. [Google Scholar]
- 11.Kraeutler B., and Bard A.J. (1978) J. Am. Chem. Soc., 100, 2239. [Google Scholar]
- 12.Frank S.N., and Bard A.J. (1977) J. Phys. Chem., 81, 1484. [Google Scholar]
- 13.Grela M.A., Coronel M.E.J., and Colussi A.J. (1996) J. Phys. Chem., 100, 16940. [Google Scholar]
- 14.Schwarz P.F. et al. (1997) J. Phys. Chem. B, 101, 7127. [Google Scholar]
- 15.Barrer R.M. (1978) Zeolites and Clay Minerals, Academic Press, London. [Google Scholar]
- 16.Karger J., and Ruthen D.M. (1992) Diffusion in Zeolites, Wiley, New York. [Google Scholar]
- 17.Rhodes C.J. (2010) Sci. Prog., 93, 223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Restoration of environments with radioactive residues (2000) International Atomic Energy Agency, Vienna. [Google Scholar]
- 19.Rhodes C.J., Reid I.D., and Zimmermann U. (2002) J. Chem. Soc., Chem. Comm., 1092. [DOI] [PubMed] [Google Scholar]
- 20.Mazzoleni F., Ottaviani M.F., Romanelli M., and Martin G. (1988) J. Phys. Chem., 92, 1953. [Google Scholar]
- 21. http://igatur-archive.library.uu.nl/dissertations/2003-0325-143241/inhoud.htm
- 22.Okazki M., and Toriyama K. (2005) J. Phys. Chem. B, 109, 20068. [DOI] [PubMed] [Google Scholar]
- 23.Okazki M., and Toriyama K. (2005) J. Phys. Chem. B, 109, 13180. [DOI] [PubMed] [Google Scholar]
- 24.Okazki M., and Toriyama K. (2007) J. Phys. Chem. B, 111, 9122. [Google Scholar]
- 25.Okazaki M., Jin P., Ohta K., and Toriyama K. (2009) J. Phys. Chem. C, 113, 11086. [Google Scholar]
- 26.Okazaki M., Seelan S., and Toriyama K. (2009) App. Magn. Reson., 35, 363. [Google Scholar]
- 27.Liu W., Komaguchi K., Shiotani M., Michalik J., and Lund A. (2000) Phys. Chem. Chem. Phys., 2, 2515. [Google Scholar]
- 28.Liu W., Shiotani M., Michalik J., and Lund A. (2001) Phys. Chem. Chem. Phys., 3, 3532. [Google Scholar]
- 29.Liu W., Yamanaka S., Shiotani M., Michalik J., and Lund A. (2001) Phys. Chem. Chem. Phys., 3, 1611. [Google Scholar]
- 30.Rhodes C.J. (1991) Trans. Faraday Soc., 81, 3179. [Google Scholar]
- 31.Liu W. et al. (2003) App. Magn. Reson., 24, 285. [Google Scholar]
- 32.Yahiro H., Lund A., and Shiotani M. (2004) Spectrochimica Acta Part A, 60, 1267. [DOI] [PubMed] [Google Scholar]
- 33.Biglino D. et al. (1999) Phys. Chem. Chem. Phys., 1, 2887. [Google Scholar]
- 34.Li H. et al. (1999) Micropor. Mesopor. Mat., 30, 275. [Google Scholar]
- 35.Hirano T. et al. (1999) J. Am. Chem. Soc., 121, 7170. [Google Scholar]
- 36.Lem G., and Turro N.J. (2000) Chem. Comm., 393. [Google Scholar]
- 37.Turro N.J. et al. (2002) J. Org. Chem., 67, 2606. [DOI] [PubMed] [Google Scholar]
- 38.Liu Z. et al. (2004) J. Phys. Chem. A, 108, 8040. [Google Scholar]
- 39.Moscatelli A. (2008) J. Am. Chem. Soc., 130, 11344. [DOI] [PubMed] [Google Scholar]
- 40.Doetschman D.C., and Thomas G.D. (1998) Chem. Phys., 228, 103; Rhodes, C.J. to be published. [Google Scholar]
- 41.Gardner C.L., and Weinberger M.A. (1970) Can. J. Chem., 48(8), 1317; Rhodes, C.J. to be published. [Google Scholar]
- 42.Rhodes C.J. (2007) Annu. Rep. Prog. Chem. Sect. C: Phys. Chem., 103, 287. [Google Scholar]
- 43.Symons M.C.R. (1996) Free Rad. Biol. Med., 6, 831. [DOI] [PubMed] [Google Scholar]
- 44.Tanaka Y., Zhang Q., and Saito F. (2004) J. Mater. Sci., 39, 5497. [Google Scholar]
- 45.McMillen D.F., and Golden D.M. (1982) Ann. Rev. Phys. Chem., 33, 493. [Google Scholar]
- 46.Lankamp H., Nauta W.Th., and MacLean C. (1968) Tetrahedron Letters, 9, 249. [Google Scholar]
- 47.Dadali A.A., Lastenko I.P., Aksenkov V.V., and Ivanon A.N. (1993) Russ. J. Phys. Chem., 67, 166. [Google Scholar]
- 48.Maeda K., and Huyashi, (1970) T. Bull. Chem. Soc. Jpn., 43, 429. [Google Scholar]
- 49.Mori Y. et al. (1996) Bull. Chem. Soc. Jpn., 69, 2355. [Google Scholar]
- 50.Urbanski T. (1967) Nature, 216, 577. [Google Scholar]
- 51.Varentsov E.A., Bystrikov A.B., and Karpal V.M. (1988) Russ. J. Phys. Chem., 62, 1089. [Google Scholar]
- 52.Varentsov E.A., and Khrustalev Yu.A. (1995) Russ. Chem. Rev., 783. [Google Scholar]
- 53.Tipikin D.S., Lazarev G.G., and Lebedev Ya.S. (1993) Russ. J. Phys. Chem., 67, 159. [Google Scholar]
- 54.Tipikin D.S., Lebedev Ya.S., and Rieker A. (1997) Chem. Phys. Lett., 272, 404. [Google Scholar]
- 55.Finlayson-Pitts B.J., and Pitts J.N. Jr. (2000) Chemistry of the upper and lower atmosphere, Academic Press, San Diego. [Google Scholar]
- 56.Mihelcic D., Musgen D.K.P., Patz H.W., and Volz-Thomas A. (1993) J. Atmospheric. Chem., 16, 313. [Google Scholar]
- 57.Burns D.T., Salem M.A., Baxter R.I., and Flockhart B.D. (1986) Anal. Chim. Acta, 183, 281. [Google Scholar]
- 58.Loktev M.I., and Slinkin A.A. (1976) Russ. Chem. Rev., 45, 807. [Google Scholar]
- 59.Yordanov N.D. (1999) In: Spurny K.R. (ed.), Analytical chemistry of aerosols, Lewis Publishers, Boca Raton, p. 197. [Google Scholar]
- 60.Yamanaka C., Matsuda T., and Ikeya M. (2005) App. Radiat. Isotop., 62, 307. [DOI] [PubMed] [Google Scholar]
- 61.Xie Z., Blum J.D., Utsunomiya S., Ewing R.C., Wang X., and Sun L. (2007) J. Geophys. Res., 112, D02306, doi: 10.1029/2006JD007247. [Google Scholar]
- 62.Schnitzer M. (1990) In: MacCarthy P., Clapp C.E., Malcolm R.L., and Bloom P.R. (eds), Humic substances in soil and crop sciences, American Society of Agronomy, Inc; Soil Science Society of America, Madison, p. 70. [Google Scholar]
- 63.Lakatos B., Tibai T., and Meisel J. (1977) Geoderma, 19, 319. [Google Scholar]
- 64.Cheshire M.V., Berrow M.L., Goodman B.A., and Mundie C.M. (1977) Geochem. Cosmochim. Acta, 41, 1131. [Google Scholar]
- 65.Boyd S.A., Sommers L.E., Nelson D.W., and West D.X. (1981) Soil Sci. Soc. Am. J., 45, 745. [Google Scholar]
- 66.Witwicki M. et al. (2008) Chem. Phys. Lett., 462, 300. [Google Scholar]
- 67.Jezierski A. et al. (2002) Spectrochimica Acta A, 58, 1293. [DOI] [PubMed] [Google Scholar]
- 68.Bayer C., Martin-Neto L., Miclniczuk J., Pillon C.N., and Sangoi L. (2001) Soil Sci. Soc. Am. J., 65, 1473. [Google Scholar]
- 69. Regenerative organic farming: a solution to global warming. http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf
- 70.Dumestre A., McBride M., and Baveye P. (2000) Environ. Sci. Technol., 34, 1259. [Google Scholar]
- 71.Kale S.P., Murthy N.B.K., and Raghu K. (2001) Chemosphere, 44, 893. [DOI] [PubMed] [Google Scholar]
- 72.Jezierski A., Bylinska E., and Seaward M.R.D. (1999) Atmospheric Environment, 33, 4629. [Google Scholar]
- 73.Yordanov N.D., Novakova E., and Lubenova S. (2001) Anal. Chim. Acta, 437, 131. [Google Scholar]
- 74.Rhodes C.J. (ed.), Toxicology of the human environment - the critical role of free radicals (2000), Taylor and Francis, London. [Google Scholar]
- 75.Gulumian M., Bhoolia D.J., Theodorou P., Rollin H.B., Pollak H., and Vanwyk J.A. (1993) S. Afr. J. Sci., 89, 405. [Google Scholar]
- 76.Gulumian M. et al. (1993) J. Inorg. Biochem., 50, 133. [Google Scholar]
- 77.Gulumian M., Nkosibomvu Z.L., Channa K., and Pollak H. (1997) Environ. Health Perspec., 105, 1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Ghio A.J., Kadiiska M.B., Xiang Q.H., and Mason R.P. (1998) Free Rad. Biol. Med., 24, 11. [DOI] [PubMed] [Google Scholar]
- 79.Ottaviani M.F., and Venturi F. (1996) J. Phys. Chem., 100, 265. [Google Scholar]
- 80.Dalal N.S., Newman J., Pack D., Leonard S., and Vallyathan V. (1995) Free Rad. Biol. Med., 18, 11. [DOI] [PubMed] [Google Scholar]
- 81.Shi X.L. et al. (1995) J. Toxicol. Env. Health, 46, 233. [DOI] [PubMed] [Google Scholar]
- 82.Shi X.L., Flynn D.C., Porter D.W., Leonard S.S., Vallyathan V., and Castranova V. (1997) Annals Clin. Lab. Sci., 27, 365. [PubMed] [Google Scholar]
- 83.Hideg E., and Vass I. http://www.photobiology.com/v1/hideg/index.htm
- 84.Van Bilsen D.G.J.L., and Hoekstra F.A. (1993) Plant Physiol., 101, 675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Van Bilsen D.G.J.L., Hoekstra F.A., Crowe L.M., and Crowe J.H. (1994) Plant Physiol., 104, 1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Buitlink J., Walters-Vertucci C., Hoekstra F.A., and Leprince O. (1996) Plant Physiol., 111, 235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Leprince O., and Walters-Vertucci C. (1995) Plant Physiol., 109, 1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Buitlink J., Walters C., Hoekstra F.A., and Crane J. (1998) Physiol. Plant, 103, 145. [Google Scholar]
- 89.Sun W.Q. (1997) Ann. Bot., 79, 291. [Google Scholar]
- 90.Hemminga M.A., and Van den Dries I.J. (1998) Biological magnetic resonance, Vol. 14. In: Berliner L.J. (ed.), Spin labelling: The Next Millenium, Plenum, New York, p. 1. [Google Scholar]
- 91.Buitlink J., Claessens M.M.A.E., Hemminga M.M., and Hoekstra F.A. (1998) Plant Physiol., 118, 531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Buitlink J., Hoekstra F.A., and Hemminga M.A. (2000) Seed Science Res., 10, 285. [Google Scholar]
- 93.Batchelor S.N. (1999) J. Phys. Chem. B, 103, 6700. [Google Scholar]
- 94.Klemm D. et al. (1998) Comprehensive cellulose chemistry, Vol. 1, Wiley-VCH, Weinheim. [Google Scholar]
- 95.Scheuermann R., Roduner E., and Batchelor S.N. (2001) J. Phys. Chem. B, 105, 11474. [Google Scholar]
- 96.Ottaviani M.F., Retini G., Cangiotti M., Mangani F., and Segre U. (2002) Spectrochim. Acta A, 58, 1129. [DOI] [PubMed] [Google Scholar]
- 97.Ikeya M. (1988) Magn. Reson. Rev., 13, 91. [Google Scholar]
- 98.Grun R. (1989) Quarternary International, 1, 65. [Google Scholar]
- 99.Grun R. (1987) In: Chronometric dating in archeology, Plenum Press, New York, p. 217. [Google Scholar]
- 100.Grun R. (2000) In: Ellis L. (ed.), Archaeological method and theory - an Encyclopedia, p. 174.
- 101.Curnoe D., Grun R., Taylor L., and Thackaray F. (2001) J. Human Evolution, 40, 379. [DOI] [PubMed] [Google Scholar]
- 102.Grun R., and Beaumont P. (2001) J. Human Evolution, 40, 467. [DOI] [PubMed] [Google Scholar]
- 103.Thorne A. et al. (1999) J. Human Evolution, 36, 591. [DOI] [PubMed] [Google Scholar]
- 104.Turney C.S.M. et al. (2001) Quarternary Research, 55, 3. [Google Scholar]
- 105.Blackwell B.A.B. et al. (2010) Health Phys., 98, 417. [DOI] [PubMed] [Google Scholar]
- 106.Blackwell B.A.B. et al. (2007) Radiation Measurements, 42, Spec. Iss. (6–7), 1250. [Google Scholar]
- 107.Grun R., and Stringer C. (2000) J. Human Evolut., 39, 601. [DOI] [PubMed] [Google Scholar]
- 108.Grun R. (2000) Radiat. Meas., 32, 767. [Google Scholar]
- 109.Grun R. (1998) Radiat. Meas., 29, 177. [Google Scholar]
- 110.Vanhaelewyn G., Callens F., and Grun R. (2000) App. Radiat. Iso., 52, 1317. [DOI] [PubMed] [Google Scholar]
- 111.Robertson S., and Grun R. (2000) Radiat. Meas., 32, 773. [Google Scholar]
- 112.Grun R. (2002) Radiat. Meas., 35, 87. [Google Scholar]
- 113.Morsy M.A., and Khaled M.M. (2002) Spectrochim. Acta A, 58, 1271. [DOI] [PubMed] [Google Scholar]
- 114.Rhodes C.J. (2010) Chem. Ind., December 20th. [Google Scholar]
- 115.Brueckner A. (2007) Adv. Catalysis, 51, 265. [Google Scholar]
- 116.Stoesser R. (2010) J. Am. Chem. Soc., 132, 9873. [DOI] [PubMed] [Google Scholar]
- 117.Li G. et al. (2008) J. Am. Chem. Soc., 130, 5402. [DOI] [PubMed] [Google Scholar]
- 118.Livraghi S. et al. (2007) Res. Chem. Interm., 33, 739. [Google Scholar]
- 119.Zhang J., Xiao L., Cong Y., and Anpo M. (2008) Topics in Catalysis, 47, 122. [Google Scholar]
- 120.Polyakov N.E. et al. (2010) J. Phys. Chem. B, 114, 14200. [DOI] [PubMed] [Google Scholar]
- 121.Fittipaldi M. et al. (2009) J. Phys. Chem. C, 113, 6221. [Google Scholar]
- 122.Brusa M.A., Di Iorio Y., Churio M.S., and Grela M.A. (2007) J. Mol. Catal.–Chemical, 268, 29. [Google Scholar]
- 123.Zhang D.-D. et al. (2009) J. Hazard. Mater., 163, 843. [DOI] [PubMed] [Google Scholar]
- 124.Araujo J.C. et al. (2007) J. Nanosci. Nanotechnol., 7, 3643. [DOI] [PubMed] [Google Scholar]
- 125.Liu C.X. et al. (2007) J. Adv. Oxidat. Technol., 10, 11. [Google Scholar]
- 126.Tryba B., Gzerwinska M., and Morawski A.W. (2007) RILEM Proceedings, PRO 2007, 55(Photocatalysis, Environment and Construction Materials), 235. [Google Scholar]
- 127.Bandos T.J., and Ania C.O. (2006) Interface Science and Technology, 7 (Activated Carbon Surfaces in Environmental Remediation), 159. [Google Scholar]
- 128.Scorzelli R.B. (2008) Clay Minerals, 43, 129. [Google Scholar]
- 129.Jerzykiewicz M., Cwielag I., and Jerzykiewicz W. (2009) J. Chem. Tech. Biotech., 84, 1196. [Google Scholar]
- 130.Piccinato M.T., Guedes C.L.B., and Di Mauro E. (2009) Appl. Magn. Reson., 35, 379. [Google Scholar]
- 131.Di Mauro E., Guedes C.L.B., and Piccinato M.T. (2007) Appl. Magn. Reson., 32, 303. [Google Scholar]
- 132.Cogo S.L. et al. (2009) Braz. J. Phys., 39, 31. [Google Scholar]
- 133.Senglet N. et al. (1990) Fuel, 69, 203. [Google Scholar]
- 134.Guedes C. et al. (2003) Marine Chemistry, 84, 105. [Google Scholar]
- 135.Uesugi A., and Ikeya M. (2001) Jpn. J. Appl. Phys., 40, 2251. [Google Scholar]
- 136.Dickneider T.A., Whelan J.K., and Blough N.V. (1995) Org. Geochem., 23, 97. [Google Scholar]
- 137.Rhodes C.J. (2007) Ann. Rep. Prog. Chem. Sect. C: Physical Chemistry, 103, 287. [Google Scholar]
- 138.Rhodes C.J. (2005) “Energy Balance” http://ergobalance.blogspot.com
- 139.Panchenko A. et al. (2004) Phys. Chem. Chem. Phys., 6, 2891. [Google Scholar]
- 140.Panchenko A. et al. (2004) J. Power Sources, 127, 325. [Google Scholar]
- 141.Rhodes C.J. (2008) Annu. Rep. Prog. Chem. Sect. C: Phys. Chem., 104, 81. [Google Scholar]
- 142. Rhodes C.J.. http://blogs.forbes.com/energysource/2011/02/01/endangered-elements-pose-threat-to-green-energy/
- 143.Panchenko A., Aleksandrova E., and Roduner E. (2005) Fudan Xuebao Ziran Kexueban, 44, 719. [Google Scholar]
- 144.Danilczuk M., Perkowski A.J., and Schlick S. (2010) Macromolecules, 43, 3352. [Google Scholar]
- 145.Danilczuk M., Coms F.D., and Schlick S. (2009) J. Phys. Chem. B, 113, 8031. [DOI] [PubMed] [Google Scholar]
- 146.Schoenberger F., Kerres J., Dilger H., and Roduner E. (2009) Phys. Chem. Chem. Phys., 11, 5782. [DOI] [PubMed] [Google Scholar]
- 147.Lawton J.S., Smotkin E.S., and Budil E.D. (2008) J. Phys. Chem. B, 112, 8549. [DOI] [PubMed] [Google Scholar]
- 148.Lipson A.G. (2009) Diamond Relat. Mater., 18, 984. [Google Scholar]
- 149.Dobrynin et al. (1981) Long-term energy resources, Pitman, Boston, pp. 727. [Google Scholar]
- 150.Rhodes C.J. (2008) Sci. Prog., 91, 317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151.Takeya K. et al. (2005) J. Phys. Chem. B, 109, 21086. [DOI] [PubMed] [Google Scholar]
- 152.Takeya K., Tani A., Yada T., and Ikeya M. (2005) Appl. Radiat. Isot., 62, 371. [DOI] [PubMed] [Google Scholar]
- 153.Takeya K. et al. (2007) Jpn. J. Appl. Phys., 46, 3066. [Google Scholar]
- 154.Pilawa B., and Wieckowski A.B. (2007) Res. Chem. Intermed., 33, 825. [Google Scholar]
- 155.Domagala W., Pilawa B., and Lapkowski M. (2008) Electrochim. Acta, 53, 4580. [Google Scholar]
- 156.Kulikov A.V., Komissarova A.S., Shishlov M. N., and Fokeeva L.S. (2008) Russ. Chem. Bull., 57, 324. [Google Scholar]
- 157.Witt F., Kruszynska M., Borchert H., and Parisi J. (2010) J. Phys. Chem. Lett., 1, 2999. [Google Scholar]
- 158.Earle M.J., and Seddon K.R. (2000) Pure Appl. Chem., 72, 1391. [Google Scholar]
- 159.Stoesser R. et al. (2006) J. Phys. Org. Chem., 19, 318. [Google Scholar]
- 160.Stoesser R. et al. (2006) Z. Phys. Chem., 220, 1309. [Google Scholar]
- 161.McTavish R.A. (2003) J. Pet. Geol., 26, 65. [Google Scholar]
- 162.Tsay F.-D., and Cjan S.I. (1971) Proc. Second Lunar Space Conference, 3, 2515. [Google Scholar]
- 163.Kurahashi E., Yamanaka C., Nakamura K., and Sasaki S. (2002) Earth Planets Space, 54, e5. [Google Scholar]
- 164.Hapke B. (2001) J. Geophys. Res., 106, 10039. [Google Scholar]
- 165.Yen A.S., Kim S.S., Hecht M.H., Frant M.S., and Murray B. (2000) Science, 289, 1909. [DOI] [PubMed] [Google Scholar]
- 166.Hurowitz J.A. et al. (2007) Earth and Planetary Science Letters, 255, 41. [Google Scholar]
- 167.Tsukamoto Y., Ikeya M., and Yamanaka C. (1993) App. Radiat. Iso., 44, 221. [DOI] [PubMed] [Google Scholar]
- 168.Gourier D. et al. (2004) Spectrochim. Acta A, 60, 1349. [DOI] [PubMed] [Google Scholar]
- 169.Binet L. et al. (2004) Geochim. Cosmochim. Acta, 68, 881. [Google Scholar]
- 170.Delpoux O. et al. (2011) Geochim. Cosmochim. Acta, 75, 326. [Google Scholar]
- 171.Thamaphat K., Limsuwan P., and Meejoo S. (2007) Chin. Phys. Lett., 24, 3524. [Google Scholar]
- 172.Yu L., and Cheng Z. (2008) Molecular Nutrition and Food Research, 52, 62. [DOI] [PubMed] [Google Scholar]
- 173.Robertson J.A., and Sutcliffe L.H. (2005) Magn. Reson. Chem., 43, 457. [DOI] [PubMed] [Google Scholar]
- 174.Robertson J.A., Sutcliffe L.H., and Mills E.N.C. (2006, J. Agric. Food Chem., 54, 1427. [DOI] [PubMed] [Google Scholar]
- 175.Gillies D., Greenley K.R., and Sutcliffe L.H. (2006) J. Agric. Food Chem., 54, 4943. [DOI] [PubMed] [Google Scholar]