Abstract
For decades neurons have been regarded as the only cells involved in the generation and control of brain signalling, while the surrounding glia was supposed to provide structural and metabolic support to neuronal function. However, based on a number of recent findings, a new view is emerging: astrocytes, the glial cells ensheathing synaptic specializations, are active and integrated participants of neurotransmission. Not only do astrocytes take up and remove synaptically released glutamate (the major excitatory neurotransmitter), thus ending its stimulatory action and preventing neuronal damage, but also and oustandingly, they are able to undergo rapid bidirectional communication with neurons, based on reciprocal glutamatergic signalling. Thus, release of glutamate from synaptic terminals, in addition to postsynaptic neurons, turns on the astrocytes nearby which respond by liberating the same neurotransmitter via a novel Ca2+-dependent mechanism and thereby signal back to neurons. The present review discusses the above findings and their important implications as well as additional evidence supporting the new concept of an integrated neuron-astrocyte communication in brain function.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
References
- 1.Hammond C. (1996) Glial Cells. Cellular and Molecular Neurobiology, pp. 47–59, Academic Press, San Diego. [Google Scholar]
- 2.Tsacopoulos M. & Magistretti P.J. (1996) Metabolic coupling between glia and neurons. J. Neurosci., 16, 877–885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Giaume C. & McCarthy K.D. (1996) Control of gap-junctional communication in astrocytic networks. Trends Neurosci., 19, 319–325. [DOI] [PubMed] [Google Scholar]
- 4.Nicholls D. & Attwell D. (1990) The release and uptake of excitatory amino acids. Trends Pharmacol. Sci., 11, 462–168. [DOI] [PubMed] [Google Scholar]
- 5.Choi D.W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1, 623–634. [DOI] [PubMed] [Google Scholar]
- 6.Zerangue N. & Kavanaugh M.P. (1996) Flux coupling in a neuronal glutamate transporter. Nature, 383, 634–637. [DOI] [PubMed] [Google Scholar]
- 7.Bouvier M., Szatkowski M., Amato A. & Attwell D. (1992) The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature, 360, 471–174. [DOI] [PubMed] [Google Scholar]
- 8.Eliasof S., Arriza J.L., Leighton B.H., Kavanaugh M.P. & Amara S.G. (1998) Excitatory amino acid transporters of the salamander retina: identification, localization, and function. J. Neurosci., 18, 698–712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Szatkowski M., Barbour B. & Attwell D. (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature, 348, 443–446. [DOI] [PubMed] [Google Scholar]
- 10.Kanai Y., Smith C.P. & Hediger M.A. (1994) A new family of neurotransmitter transporters: the high-affinity glutamate transporters. Faseb J., 8, 1450–1459. [DOI] [PubMed] [Google Scholar]
- 11.Coco S., Verderio C., Trotti D., Rothstein J.D., Volterra A. & Matteoli M. (1997) Non-synaptic localization of the glutamate transporter EAAC1 in cultured hippocampal neurons. Europ. J. Neurosci., 9, 1902–1910. [DOI] [PubMed] [Google Scholar]
- 12.Chaudhry F.A., Lehre K.P., van-Lookeren-Campagne M., Ottersen O.P., Danbolt N.C. & Storm-Mathisen J. (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron, 15, 711–720. [DOI] [PubMed] [Google Scholar]
- 13.Rothstein J.D., Dykes-Hoberg M., Pardo C.A., Bristol L.A., Jin L., Kuncl R.W., Kanai Y., Hediger M.A., Wang Y., Schielke J.P. & Welty D.F. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron, 16, 675–686. [DOI] [PubMed] [Google Scholar]
- 14.Rosenberg P.A., Amin S. & Leitner M. (1992) Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture. J. Neurosci., 12, 56–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Tanaka K., Watase K., Manabe T., Yamada K., Watanabe M., Takahaschi K., Iwama H., Nishikawa T., Ichihara N., Kikuchi T., Okuyama S., Kawashima N., Hori S., Takimoto M. & Wada K. (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science, 276, 1699–1702. [DOI] [PubMed] [Google Scholar]
- 16.Peghini P., Janzen J. & Stoffel W. (1997) Glutamate transporter EAAC-1-deficient mice develop dicarboxilyc aminoaciduria and behavioral abnormalities but no neurodegeneration. Embo J., 16, 3822–32. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Rothstein J.D., Van-Kammen M., Levey A.I., Martin L.J. and Kuncl R.W. (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Annals Neurol., 38, 73–84. [DOI] [PubMed] [Google Scholar]
- 18.Waniewski R.A. & Martin D.L. (1986) Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures. J. Neurochem., 47, 304–313. [DOI] [PubMed] [Google Scholar]
- 19.Erecinska M. & Silver I.A. (1990) Metabolism and role of glutamate in mammalian brain. Progr. Neurobiol., 35, 245–296. [DOI] [PubMed] [Google Scholar]
- 20.Tamarappoo B.K., Raizada M.K. & Kilbeig S. (1997) Identification of a system N-like Na+-dependent glutamine transport activity in rat brain neurons. J. Neurochem., 68, 954–960. [DOI] [PubMed] [Google Scholar]
- 21.Laake J.H., Slyngstad T.A., Haug F.M. & Ottersen O.P. (1995) Glutamine from glial cells is essential for the maintenance of the nerve terminal pool of glutamate: immunogold evidence from hippocampal slice cultures. J. Neurochem., 65, 871–881. [DOI] [PubMed] [Google Scholar]
- 22.Lapidot A. & Gopher A. (1994) Cerebral metabolic compartmentation. J. Biol. Chem., 269, 27198–27208. [PubMed] [Google Scholar]
- 23.Pellerin L. & Magistretti P.J. (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Nat. Acad. Sci., 91, 10625–10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Bowman C.L. & Kimelberg H.K. (1984) Excitatory amino acids directly depolarize rat brain astocytes in primary cultures. Nature, 311, 656–659. [DOI] [PubMed] [Google Scholar]
- 25.Sibson N.R., Dhankhar A., Mason G.F., Rothman D.L., Behar K.L. & Shulman R.G. (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Nat. Acad. Sci. USA, 95, 316–321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Pfrieger F.W. & Barres B.A. (1996) New views on synapse-glia interactions. Curr. Op. Neurobiol., 6, 615–621. [DOI] [PubMed] [Google Scholar]
- 27.Wechsler-Reya R.J. & Barres B.A. (1997) Communication helps you see the light. Curr. Biol., 7, R433–R436. [DOI] [PubMed] [Google Scholar]
- 28.Fruttiger M., Calver A.R., Krüger W.H., Mudhar H.S., Michalovich D., Takakura N., Nishikawa S.I. & Richardson W.D. (1996) PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron, 17, 1117–11131. [DOI] [PubMed] [Google Scholar]
- 29.Stone J., Itin A., Alon T., Pe'er J., Gnessin H., Chang-Ling T. & Keshet E. (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci., 15, 4738–4747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Burne J. & Raff MC (1997) Retinal ganglion cell axons drive the proliferation of astrocytes in the developing rodent optic nerve. Neuron, 18, 223–230. [DOI] [PubMed] [Google Scholar]
- 31.Pfrieger F.W. & Barres B.A. (1997) Synaptic efficacy enhanced by glial cells in vitro. Science, 277, 1684–1687. [DOI] [PubMed] [Google Scholar]
- 32.Kimelberg H.K., Goderie S.K., Higman S., Pang S. & Waniewski R.A. (1990) Swelling-induced release of glutamate, aspartate and taurine from astocyte cultures. J. Neurosci., 10, 1583–1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Nedergaard M. (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science, 263, 1768–1771. [DOI] [PubMed] [Google Scholar]
- 34.Parpura V., Basarsky T.A., Liu F., Jeftinija K., Jeftinija S. & Haydon P.G. (1994) Glutamate-mediated astrocyte-neuron signalling. Nature, 369, 744–747. [DOI] [PubMed] [Google Scholar]
- 35.Steinhauser C. & Gallo V. (1996) News on glutamate receptors in glial cells. Trends Neurosci., 19, 339–345. [DOI] [PubMed] [Google Scholar]
- 36.Cornell-Bell A.H., Finkbeiner S.M., Cooper M.S. & Smith S.J. (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science, 247, 470–473. [DOI] [PubMed] [Google Scholar]
- 37.Dani J.W., Chernjavsky A. & Smith S.J. (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron, 8, 429–440. [DOI] [PubMed] [Google Scholar]
- 38.Porter J.T. & McCarthy K.D. (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci., 16, 5073–5081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Bezzi P., Carmignoto G., Pasti L., Vesce S., Rossi D., Rizzini B.L., Pozzan T. & Volterra A. (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature, 391, 281–285. [DOI] [PubMed] [Google Scholar]
- 40.Jeftinija S.D., Jeftinija K.V. & Stefanovic G. (1997) Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res., 750, 41-47. [DOI] [PubMed] [Google Scholar]
- 41.Watkins J.C., Krogsgaard-Larsen P. & Honoré T. (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci., 11, 25–33. [DOI] [PubMed] [Google Scholar]
- 42.Nakahara K., Okada M. & Nakanishi S. (1997) The metabotropic glutamate receptor mGluR5 induces calcium oscillations in cultured astrocytes via protein kinase C phosphorilation. J. Neurochem., 69, 1467–1475. [DOI] [PubMed] [Google Scholar]
- 43.Dumuis A., Pin J.P., Oomagari K., Sebben M. & Bockaert J. (1990) Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature, 347, 182–184. [DOI] [PubMed] [Google Scholar]
- 44.Stella N., Tence M., Glowinski J. & Premont J. (1994) Glutamate-evoked release of arachidonic acid from mouse brain astrocytes. J. Neurosci., 14, 568–575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Ferrarese C., Riva R., Dolara A., De Micheli A. & Frattola L. (1997) Elevated glutamate in the cerebrospinal fluid of patients with HIV dementia. JAMA, 277, 630. [PubMed] [Google Scholar]
- 46.Vesce S., Bezzi P., Rossi D., Meldolesi J. & Volterra A. (1997) HIV-1 gp120 glycoprotein affects the astrocyte control of extracellular glutamate by both inhibiting the uptake and stimulating the release of the amino acid. Febs Lett., 411, 107–109. [DOI] [PubMed] [Google Scholar]
- 47.Malmberg A.B. & Yaksh T.L. (1992) Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxigenase inhibition. Science, 257, 1276–1279 [DOI] [PubMed] [Google Scholar]
- 48.Collaco-Moraes Y., Aspey B., Harrison M. & De Belleroche J. (1996) Cyclo-oxigenase-2 messenger RNA induction in focal cerebral ischemia. J. Cerebral Blood Flow Metabol., 16, 1366–1372. [DOI] [PubMed] [Google Scholar]
- 49.Pasti L., Volterra A., Pozzan T. & Carmignoto G. (1997) Intracellular calcium oscillations in astrocytes: a higly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci., 17, 7817–7830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Sastry B.R., Maretic H., Morishita W. & Xie Z. (1990) Modulation of the induction of long-term potentiation in the hippocampus. Adv. Exp. Med. Biol., 268, 377–386. [DOI] [PubMed] [Google Scholar]
- 51.Pasti L., Pozzan T. & Carmignoto G. (1995) Long-lasting changes of calcium oscillations in astrocytes. A new form of glutamate-mediated plasticity. J. Biol. Chem., 270, 15203–15210. [DOI] [PubMed] [Google Scholar]
