Abstract
Phosphatidylinositol (PI)-4-phosphate (PI4P) is a lipid found at the plasma membrane (PM) and Golgi in cells from yeast to humans. PI4P is generated from PI by PI4-kinases and can be converted to PI-4,5-bisphosphate [PI(4,5)P 2 ]. Schizosaccharomyces pombe have 2 essential PI4-kinases: Stt4 and Pik1. Stt4 localizes to the PM and its loss from the PM results in a decrease of PM PI4P and PI(4,5)P 2 . As a result, cells divide non-medially due to disrupted cytokinetic ring-PM anchoring. However, the localization and function of S. pombe Pik1 has not been thoroughly examined. Here, we found that Pik1 localizes exclusively to the trans-Golgi and is required for Golgi PI4P production. We determined that Ncs1 regulates Pik1, but unlike in other organisms, it is not required for Pik1 Golgi localization. When Pik1 function was disrupted, PM PI4P but not PI(4,5)P 2 levels were reduced, a major difference with Stt4. We conclude that Stt4 is the chief enzyme responsible for producing the PI4P that generates PI(4,5)P 2 . Also, that cells with disrupted Pik1 do not divide asymmetrically highlights the specific importance of PM PI(4,5)P 2 for cytokinetic ring-PM anchoring.
Summary statement
Fission yeast Pik1 localizes exclusively to the trans-Golgi independently of Ncs1, where it contributes to PI4P but not PI(4,5)P 2 synthesis. Pik1 does not affect cytokinesis.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.