Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1986 Sep;70(9):642–650. doi: 10.1136/bjo.70.9.642

Herpes simplex virus type 1 persistence and latency in cultured rabbit corneal epithelial cells, keratocytes, and endothelial cells.

S D Cook, S M Brown
PMCID: PMC1040792  PMID: 3019382

Abstract

Cell cultures of rabbit corneal epithelium, keratocytes, and endothelium were used to determine the lytic cycle of herpes simplex virus type 1. Viral growth was fastest in epithelial cells. A novel HSV-1 in-vitro latency system was established in the three distinct cell types. Cell cultures were inoculated at low multiplicities of infection with HSV-1. Temperature manipulation alone was used to induce and reactivate latent HSV-1 infections. The presence of cellular stress proteins was demonstrated at supraoptimal temperatures. All cell types were capable of maintaining latent viral infections under these conditions. Viral persistence was present in 20% of epithelial cell cultures at supraoptimal temperatures, but not in keratocyte cultures or endothelial cell cultures.

Full text

PDF
642

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler R., Glorioso J. C., Levine M. Infection by herpes simplex virus and cells of nervous system origin: characterization of a non-permissive interaction. J Gen Virol. 1978 Apr;39(1):9–20. doi: 10.1099/0022-1317-39-1-9. [DOI] [PubMed] [Google Scholar]
  2. Al-Saadi S. A., Clements G. B., Subak-Sharpe J. H. Viral genes modify herpes simplex virus latency both in mouse footpad and sensory ganglia. J Gen Virol. 1983 May;64(Pt 5):1175–1179. doi: 10.1099/0022-1317-64-5-1175. [DOI] [PubMed] [Google Scholar]
  3. Baringer J. R., Swoveland P. Recovery of herpes-simplex virus from human trigeminal ganglions. N Engl J Med. 1973 Mar 29;288(13):648–650. doi: 10.1056/NEJM197303292881303. [DOI] [PubMed] [Google Scholar]
  4. Bastian F. O., Rabson A. S., Yee C. L., Tralka T. S. Herpesvirus hominis: isolation from human trigeminal ganglion. Science. 1972 Oct 20;178(4058):306–307. doi: 10.1126/science.178.4058.306. [DOI] [PubMed] [Google Scholar]
  5. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. J Gen Virol. 1973 Mar;18(3):329–346. doi: 10.1099/0022-1317-18-3-329. [DOI] [PubMed] [Google Scholar]
  6. Colberg-Poley A. M., Isom H. C., Rapp F. Reactivation of herpes simplex virus type 2 from a quiescent state by human cytomegalovirus. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5948–5951. doi: 10.1073/pnas.76.11.5948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coleman V. R., Thygeson P., Dawson C. R., Jawetz E. Isolation of virus from herpetic keratitis. Influence of idoxuridine on isolation rates. Arch Ophthalmol. 1969 Jan;81(1):22–24. doi: 10.1001/archopht.1969.00990010024004. [DOI] [PubMed] [Google Scholar]
  8. Dawson C., Togni B., Moore T. E., Jr Structural changes in chronic herpetic keratitis. Studied by light and electron microscopy. Arch Ophthalmol. 1968 Jun;79(6):740–747. doi: 10.1001/archopht.1968.03850040742016. [DOI] [PubMed] [Google Scholar]
  9. Gospodarowicz D., Greenburg G., Vlodavsky I., Alvarado J., Johnson L. K. The identification and localization of fibronectin in cultured corneal endothelial cells: cell surface polarity and physiological implications. Exp Eye Res. 1979 Nov;29(5):485–509. doi: 10.1016/0014-4835(79)90151-9. [DOI] [PubMed] [Google Scholar]
  10. Hill T. J., Blyth W. A., Harbour D. A. Recurrence of herpes simplex in the mouse requires an intact nerve supply to the skin. J Gen Virol. 1983 Dec;64(Pt 12):2763–2765. doi: 10.1099/0022-1317-64-12-2763. [DOI] [PubMed] [Google Scholar]
  11. Hill T. J., Field H. J., Blyth W. A. Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. J Gen Virol. 1975 Sep;28(3):341–353. doi: 10.1099/0022-1317-28-3-341. [DOI] [PubMed] [Google Scholar]
  12. Kaufman H. E. Editorial: Herpetic stromal disease. Am J Ophthalmol. 1975 Dec;80(6):1092–1094. doi: 10.1016/0002-9394(75)90343-8. [DOI] [PubMed] [Google Scholar]
  13. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
  14. Levinson W., Mikelens P., Oppermann H., Jackson J. Effect of antabuse (disulfiram) on Rous sarcoma virus and on eukaryotic cells. Biochim Biophys Acta. 1978 Jun 22;519(1):65–75. doi: 10.1016/0005-2787(78)90062-x. [DOI] [PubMed] [Google Scholar]
  15. Levinson W., Oppermann H., Jackson J. Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochim Biophys Acta. 1980;606(1):170–180. doi: 10.1016/0005-2787(80)90108-2. [DOI] [PubMed] [Google Scholar]
  16. Marsden H. S., Crombie I. K., Subak-Sharpe J. H. Control of protein synthesis in herpesvirus-infected cells: analysis of the polypeptides induced by wild type and sixteen temperature-sensitive mutants of HSV strain 17. J Gen Virol. 1976 Jun;31(3):347–372. doi: 10.1099/0022-1317-31-3-347. [DOI] [PubMed] [Google Scholar]
  17. Metcalf J. F., Kaufman H. E. Herpetic stromal keratitis-evidence for cell-mediated immunopathogenesis. Am J Ophthalmol. 1976 Dec;82(6):827–834. doi: 10.1016/0002-9394(76)90057-x. [DOI] [PubMed] [Google Scholar]
  18. Meyers-Elliott R. H., Chitjian P. A. Induction of cell-mediated immunity in herpes simplex virus keratitis. Kinetics of lymphocyte transformation and the effect of antiviral antibody. Invest Ophthalmol Vis Sci. 1980 Aug;19(8):920–929. [PubMed] [Google Scholar]
  19. Nesburn A. B., Elliott J. H., Leibowitz H. M. Spontaneous reactivation of experimental herpes simplex keratitis in rabbits. Arch Ophthalmol. 1967 Oct;78(4):523–529. doi: 10.1001/archopht.1967.00980030525021. [DOI] [PubMed] [Google Scholar]
  20. Notarianni E. L., Preston C. M. Activation of cellular stress protein genes by herpes simplex virus temperature-sensitive mutants which overproduce immediate early polypeptides. Virology. 1982 Nov;123(1):113–122. doi: 10.1016/0042-6822(82)90299-9. [DOI] [PubMed] [Google Scholar]
  21. O'Neill F. J., Goldberg R. J., Rapp F. Herpes simplex virus latency in cultured human cells following treatment with cytosine arabinoside. J Gen Virol. 1972 Feb;14(2):189–197. doi: 10.1099/0022-1317-14-2-189. [DOI] [PubMed] [Google Scholar]
  22. O'Neill F. J. Prolongation of herpes simplex virus latency in cultured human cells by temperature elevation. J Virol. 1977 Oct;24(1):41–46. doi: 10.1128/jvi.24.1.41-46.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Openshaw H. Latency of herpes simplex virus in ocular tissue of mice. Infect Immun. 1983 Feb;39(2):960–962. doi: 10.1128/iai.39.2.960-962.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Russell J., Preston C. M. An in vitro latency system for herpes simplex virus type 2. J Gen Virol. 1986 Feb;67(Pt 2):397–403. doi: 10.1099/0022-1317-67-2-397. [DOI] [PubMed] [Google Scholar]
  25. STOCKER F. W., EIRING A., GEORGIADE R., GEORGIADE N. A tissue culture technique for growing corneal epithelial, stromal, and endothelial tissues separately. Am J Ophthalmol. 1958 Nov;46(5 Pt 2):294–298. doi: 10.1016/0002-9394(58)90811-0. [DOI] [PubMed] [Google Scholar]
  26. Scriba M., Tatzber F. Pathogenesis of Herpes simplex virus infections in guinea pigs. Infect Immun. 1981 Dec;34(3):655–661. doi: 10.1128/iai.34.3.655-661.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shimeld C., Tullo A. B., Easty D. L., Thomsitt J. Isolation of herpes simplex virus from the cornea in chronic stromal keratitis. Br J Ophthalmol. 1982 Oct;66(10):643–647. doi: 10.1136/bjo.66.10.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stevens J. G., Cook M. L. Latent herpes simplex virus in spinal ganglia of mice. Science. 1971 Aug 27;173(3999):843–845. doi: 10.1126/science.173.3999.843. [DOI] [PubMed] [Google Scholar]
  29. Stevens J. G., Nesburn A. B., Cook M. L. Latent herpes simplex virus from trigeminal ganglia of rabbits with recurrent eye infection. Nat New Biol. 1972 Feb 16;235(59):216–217. doi: 10.1038/newbio235216a0. [DOI] [PubMed] [Google Scholar]
  30. Tissières A., Mitchell H. K., Tracy U. M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol. 1974 Apr 15;84(3):389–398. doi: 10.1016/0022-2836(74)90447-1. [DOI] [PubMed] [Google Scholar]
  31. Tullo A. B., Easty D. L., Shimeld C., Stirling P. E., Darville J. M. Isolation of herpes simplex virus from corneal discs of patients with chronic stromal keratitis. Trans Ophthalmol Soc U K. 1985;104(Pt 2):159–165. [PubMed] [Google Scholar]
  32. Vannas A., Ahonen R., Mäkitie J. Corneal endothelium in herpetic keratouveitis. Arch Ophthalmol. 1983 Jun;101(6):913–915. doi: 10.1001/archopht.1983.01040010913011. [DOI] [PubMed] [Google Scholar]
  33. Wigdahl B. L., Scheck A. C., De Clercq E., Rapp F. High efficiency latency and activation of herpes simplex virus in human cells. Science. 1982 Sep 17;217(4565):1145–1146. doi: 10.1126/science.6180477. [DOI] [PubMed] [Google Scholar]
  34. Wigdahl B. L., Ziegler R. J., Sneve M., Rapp F. Herpes simplex virus latency and reactivation in isolated rat sensory neurons. Virology. 1983 May;127(1):159–167. doi: 10.1016/0042-6822(83)90380-x. [DOI] [PubMed] [Google Scholar]
  35. Wigdahl B., Smith C. A., Traglia H. M., Rapp F. Herpes simplex virus latency in isolated human neurons. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6217–6221. doi: 10.1073/pnas.81.19.6217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yamada K. M., Olden K. Fibronectins--adhesive glycoproteins of cell surface and blood. Nature. 1978 Sep 21;275(5677):179–184. doi: 10.1038/275179a0. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES