Skip to main content
Journal of Sichuan University (Medical Sciences) logoLink to Journal of Sichuan University (Medical Sciences)
. 2022 Mar 20;53(2):208–213. [Article in Chinese] doi: 10.12182/20220360508

变异链球菌致龋机制研究新进展

Research Updates: Cariogenic Mechanism of Streptococcus mutans

冬茹 陈 1,2, 焕彩 林 1,2,*
PMCID: PMC10409355  PMID: 35332719

Abstract

龋病患病率居高不下,已成为累及全球社会公共卫生的重大负担。微生物是诱发龋病的主要原因,其中变异链球菌是目前公认的主要致龋菌之一。近年来,研究技术的进步使得学术界对变异链球菌致龋相关DNA、RNA和蛋白层面的研究更加深入,也对变异链球菌表面结构和细菌外基质组成有了新的认识。本文总结了近年来变异链球菌致龋机制相关研究的新进展,以期为未来开发以变异链球菌为靶标的防龋制剂揭示更多的靶点和可能途径,推动龋病预防事业的发展。

Keywords: 龋病, 致龋菌, 变异链球菌, 致龋机制, 龋病预防


龋病是最常见的口腔慢性细菌感染性疾病,可以加重或诱发全身系统性疾病。2016年全球各疾病患病率中,恒牙龋排第一,乳牙龋排第十[1];2017年,全球约有23亿人群患恒牙龋,约5.3亿儿童患乳牙龋[2]。2018年公布的我国第四次全国口腔流行病学调查显示,5岁儿童乳牙患龋率为70.9%,12岁儿童恒牙患龋率为34.5%,35~44岁中年人患龋率为89.0%,65~74岁老年人患龋率为98.0%,其中儿童患龋率较10年前呈上升趋势[3]。长期以来,龋病患病率居高不下,成为累及全球社会公共卫生的重大负担。

龋病是由微生物、宿主、环境和时间等多因素共同作用导致的牙体硬组织进行性破坏性疾病,口腔微生物黏附牙面形成生物膜并产酸、耐酸是其致龋的主要原因。20世纪90年代MARSH提出生态菌斑学说,现代测序技术的发展不断推动着生态菌斑学说的进步。该学说强调将牙菌斑作为一个动态演化的整体,龋病发生是由于菌斑微生态平衡被打破,向产酸、耐酸菌倾斜,微环境酸度降低,微生物丰度减少、拮抗作用减弱[4-6]。过去认为变异链球菌(以下简称变链菌)是最主要的致龋菌,然而,有学者发现,尚有10%~20%的龋损中检测不到变链菌,且变链菌仅占最初牙面生物膜的2%,其它细菌亦可独立诱导动物致龋[7]。以上结果无疑挑战了变链菌作为最主要致龋菌的地位。目前观点认为,龋病是由复杂的微生物群落共同作用导致,尚未发现哪一种微生物起决定性作用;但变链菌因具有较强产酸和耐酸能力,可迅速分解碳水化合物,是胞外基质主要生产者,在龋病发生发展中起到重要作用,仍被认为是主要致龋菌。目前针对致龋菌的研究亦主要集中在变链菌,因此,本文将主要介绍变链菌致龋机制研究的新进展。

1. 变链菌致龋的生物调节过程

致龋菌黏附牙面形成牙菌斑是龋病发生的基础。唾液成分(富脯氨酸蛋白、淀粉酶、溶菌酶、组蛋白、过氧化物酶、黏蛋白及细菌成分等)选择性吸附于牙面,形成一薄层无结构、无细胞的均质性有机膜,称为获得性膜(acquired enamel pellicle, AEP)。变链菌通过蔗糖非依赖途径和蔗糖依赖途径黏附牙面AEP形成生物膜。在蔗糖缺乏或黏附初期,变链菌以非蔗糖依赖途径黏附,变链菌表面蛋白P1(又称Pac、SpaP、AgⅠ/Ⅱ)与AEP中的唾液凝集素发生特异性结合。蔗糖依赖性黏附主要涉及到葡萄糖基转移酶(glucosyltransferases, GTFs)和葡聚糖结合蛋白(glucan-binding proteins, GBPs)。GTFs释放入AEP中,在蔗糖存在的条件下,可原位酶解蔗糖,产生水溶性葡聚糖和非水溶性葡聚糖等胞外多糖(extracellular polysaccharide, EPS),变链菌结合EPS,黏附于牙面。部分EPS可与变链菌表面的GBPs特异结合促进黏附[8]。变链菌除合成EPS外,还释放大量细胞外DNA(extracellular DNA, eDNA)、脂磷壁酸(lipoteichoic acid, LTA)和蛋白到基质中,参与生物膜形成。蔗糖存在情况下,eDNA的释放量和GtfB表达量均上调。GtfB表达量上调可产生更多的EPS,eDNA可作为支架结构连接变链菌和胞外基质(包括EPS),亦允许更多EPS沉积在其表面,有利于变链菌的进一步黏附,促进生物膜形成。此外,eDNA与EPS结合增强胞外基质强度,使生物膜结构更加稳定[9]

龋病相关微生物通过转运和代谢碳水化合物,碳水化合物在糖酵解过程中产生乳酸、甲酸、乙酸和丙酸等有机酸,使局部微环境pH值降低,是导致牙面脱矿的直接原因[10]。变链菌UA159株编码了14个磷酸转移酶系统(galactosespecific phosphotransferase system, PTS)相关基因,主要负责转运单糖和双糖,及2个三磷酸腺苷结合盒(ATP-binding cassette, ABC)转运基因,主要转运寡糖。PTS转运因子将所接触的绝大部分(约95%)碳水化合物内在化转运,其余碳水化合物则通过胞外GTFs或果糖基转移酶代谢[10]。GTFs代谢外部多糖产生具有混杂性和酸度较低特性的有机酸,局部pH降低亦促进GTFs的表达。GTFs产生的EPS可形成屏障,防止酸扩散,建立局部酸屏障微环境。局部酸屏障微环境的建立可防止唾液碱性物质的缓冲[11]。为应对酸环境,变链菌发展出多个酸压力应答机制,主要包括:F1F0-ATP 酶上调,主动泵出质子;诱导应激蛋白和膜相关脂肪酸形成;增加碱产量;形成多个双组份调控系统,以上酸应答机制使变链菌能在强酸环境下生存及维持自身功能[8, 12]。变链菌应答酸环境泵出体内的质子亦增加了外部酸的降低。有研究表明,变链菌内部的pH值较外部环境高出0.5~1个pH单位[10]

2. 变链菌致龋相关因子研究新进展

2.1. 基因和蛋白

近年来,大部分关于变链菌致龋机制的研究仍集中在基因和蛋白水平,主要研究与变链菌生存、(氧、酸、糖和抗生素等)压力应答、EPS合成和生物膜形成等相关调控因子,不断深入对变链菌致龋机制的认识。通过人工查找,近年研究较多的变链菌致龋相关基因或蛋白主要为以下几种。值得注意的是,以下因子并非单一行使某种功能,某一功能也并非由单一因子完成。

与变链菌生物膜形成相关因子:双组分信号传导系统(VicRK、ComDE、CiaHR、LiaRS)、第二信使分子环二腺苷酸(c-di-AMP)等[13]、CRISPR-Cas系统关键基因[14]、S-核糖基高半胱氨酸酶(LuxS)[15]、丙氨酸消旋酶(alanine racemase, Alr)[16]、黏蛋白(mucin)[17]、PdxR(cg0897)[18]等因子。CRISPR-Cas系统是细菌应对病毒或质粒攻击而演化出的获得性免疫防御系统,近年研究发现CRISPR-Cas系统关键基因可调控细菌多项生理功能,如酸应激和生物膜形成等。研究表明,cas3基因缺失的变链菌突变株形成生物膜能力下降[19]

压力(氧、酸和抗生素等)应激相关因子:BrpA(SMU.410)[20]、Cid/Lrg系统[21]、线粒体酪蛋白水解蛋白酶P(caseinolytic protease P, ClpP)[22]、ComDE[23]、CRISPR-Cas系统关键因子[14]、EzrA[24]、PdxR(cg0897)[18]、RgpF(编码鼠李糖基转移酶)[25]、SprV(SMU.2137)[26]和VicRK[27]。ComDE系统被认为是最经典的双组分系统之一,主要与氧、酸和抗生素等压力应激有关,还参与生物膜形成、细菌素合成和自噬等[23]

代谢相关因子:PTS相关组分[28]、PdxR(cg0897)[18]和SMU_833[29]等。变链菌摄取的碳水化合物中95%是通过PTS系统转运,该系统中EIIMan是具有生理意义的PTS复合体[30]

包膜完整性和生存相关因子:BrpA(SMU.410)[20]、EzrA[24]、Cid/Lrg系统[21]、RgpF[25]和YidC家族[31]等。

耐氟相关因子:尽管氟已作为常规防龋制剂广泛使用,但耐氟变链菌株并未在临床中常见,仅在两篇文章中有过报道,如:放疗后患者大量使用氟化物防龋导致短暂耐氟变链菌株出现,目前研究的耐氟变链菌株多由实验室培养产生的稳定耐氟菌株[32-33]。因氟广泛应用,针对耐氟变链菌株的研究有预见性意义。耐氟变链菌株的生物适应性和致龋性是否强于野生株尚存在争议,近年多篇研究表明,耐氟菌株在适应性和致龋性方面强于野生株[34-35]。稳定的耐氟菌株与基因突变有关,可能的耐氟机制如下:①烯醇酶(enolase)和F-ATPase的改变。此两种酶是对氟敏感的酶,尽管有研究表明耐氟变链菌中烯醇酶和F-ATPase对氟敏感性降低,烯醇酶存在突变位点,但亦有研究报道阴性结果,因此,不能明确烯醇酶和F-ATPase与耐氟机制有关[36]。②氟泵出子(fluoride exporters)。变链菌存在两个 ClC型离子通道蛋白(eriCFS)编码基因,分别为perAperB,与氟离子泵出有关,两基因缺失,使变链菌对氟的敏感性增强。③其它位点突变。LIAO等[37]针对变链菌C180-2FR氟耐受突变株全基因组测序发现,8个单核苷酸突变位点,其中两个与氟泵出子编码有关。YU等[38]发现单独smu.396基因缺失导致变链菌耐氟,smu.1991基因区插入转座子导致其下游基因 (smu.1290c-89c)编码氟泵出子相关蛋白表达增强,出现耐氟性。smu.396基因缺失和smu.1991基因过表达使耐氟特性更强。

2.2. small RNA(sRNA)

除基因和蛋白层面的研究不断深入外,近年对变链菌转录后调控的研究亦有明显进展。研究表明,变链菌内存在一类内源性的具有调控功能的sRNA,可在转录后水平广泛调控变链菌生长、压力应答和毒力因子表达。细菌中sRNAs长度通常小于400个核苷酸,绝大多数sRNA通过与mRNA碱基互补配对结合,正向或负向调控靶mRNA表达,以应对环境变化。同一sRNA可能同时调控多种mRNA表达,而同一mRNA可能受多个sRNA调控,形成复杂的调控网络[39]

2012年,XIA等[40]通过生物信息学预测变链菌中sRNAs,实验发现L10-leader表达量较高,L10-leader与生长环境有关,不同变链菌临床株中L10-leader表达量不同。LEE等[41]通过高通量测序发现变链菌中存在超过900个microRNA长度大小的sRNAs(miRNA-size small RNA, msRNA)。MAO等[42]认为rnc基因可能通过3个msRNA负向调控vicRKX的表达,从而促进EPS的合成。笔者团队分别构建了不同酸、蔗糖和葡萄糖浓度等致龋压力下变链菌标准株UA159的sRNA文库,发现变链菌在不同压力诱导下均可产生一定数量的sRNA,不同压力诱导下表达差异最大的sRNA不同[43-46]。与变链菌黏附有关的sRNA0187和sRNA0593,在高黏附力和低黏附力变链临床株中的表达有显著性差异[45]。结合流行病学方法评估发现sRNA0187的低水平表达与乳牙龋易感性相关。此外,sRNA0426与变链菌临床株生物膜形成呈正相关关系,可能通过调控GtfB、GtfC、CcpA和ComE等因子影响EPS合成,从而影响生物膜的形成[47]

目前,关于sRNA的研究手段和研究方式有较多局限。sRNA突变株的构建可提供更为直接的功能学及机制学研究证据,是未来细菌sRNA的研究方向。此外,sRNA稳定性维持及功能发挥常需RNA结合蛋白的辅助,而变链菌中尚未报道是否存在类似RNA结合蛋白,值得进一步研究。

3. 变链菌致龋相关结构研究新进展

3.1. 淀粉样纤维

淀粉样纤维(amyloid fibers)是对一类以β折叠形式组装成高度有序纤维丝状结构的蛋白聚合体的统称。近年研究发现,淀粉样纤维不仅存在于人类退行性疾病中,也普遍存在于细菌表面,由细菌表面蛋白自发聚合而成。细菌表面淀粉样纤维具有典型的β-折叠或α-折叠,能被刚果红和硫磺素T(ThT)染色,可抵抗普通蛋白酶的降解。不同细菌中淀粉样纤维长宽不等,普遍宽约4~10 nm,长约0.1~10 μm。细菌表面淀粉样纤维是细菌重要的功能物质,可作为毒力因子介导免疫反应;可起到屏障作用,使细菌抵抗抗菌药物的作用;可作为一种黏附介质,利于细菌间或细菌与宿主间的黏附,促进生物膜形成[48-49]

2012年,OLI等[50]首次报道变链菌表面存在淀粉样纤维,在变链菌生物膜形成中起作用。2017年BESINGI等[51],发现P1蛋白C123段、WapA蛋白AgA段和另一未定义的分泌蛋白SMU_63c可能是变链菌淀粉样纤维的主要形成蛋白,其中P1蛋白C123段是目前比较公认的变链菌淀粉样纤维形成蛋白,也是研究最多的变链菌淀粉样蛋白。P1蛋白在变链菌胞质中形成后,部分P1蛋白转位并锚定在细菌胞壁,另一部分以游离形式释放到细菌外基质中。游离于胞外的P1不稳定,被分解为两个亚段,其中C123段稳定存在,另外一段(AgI段)趋于降解[52]。C123结合至Pac蛋白后启动C123蛋白淀粉样纤维化。C123的C3亚段可特异性结合至胞壁Pac蛋白的A3VP1[53]。笔者团队运用透射电子显微镜和原子力显微镜清晰观察到生物膜态变链菌表面含有大量淀粉样纤维,其形态弯曲、相互缠绕呈网状,而游离变链菌表面几乎无淀粉样纤维;广谱淀粉样纤维抑制剂-儿茶素(epigallocatechin gallate, EGCG)可抑制变链菌表面淀粉样纤维和生物膜的形成[54]。以上表明,淀粉样纤维是变链菌生物膜形成的重要结构。淀粉样纤维可与细菌外基质eDNA相互作用。金黄色葡萄球菌基质中无eDNA存在时,尽管有淀粉样纤维PSMs单体存在,金葡菌亦不能形成淀粉样纤维,而加入外源性eDNA可恢复PSMs形成淀粉样纤维的特性[55]。笔者团队联合使用EGCG和DNA酶抑制剂可更有效抑制变链菌生物膜形成[54]

目前关于变链菌淀粉样纤维的研究尚处于初期阶段,未完全明确变链菌淀粉样纤维的组成蛋白,及淀粉样纤维与基质成分(eDNA、EPS等)的相互作用。

3.2. 囊泡

囊泡直径约为10~400 nm,富含核酸、蛋白质、脂质和代谢产物等,可作为细菌间或不同物种间交流介质,参与细菌黏附、菌间竞争和压力应答等,并与免疫系统逃逸、宿主细胞感染和侵袭等有关[56]

2014年LIAO等[57]首次报道变链菌可以产生囊泡,囊泡中含有eDNA,变链菌可通过囊泡主动释放eDNA至基质中,参与生物膜形成。囊泡是不依赖细菌裂解产生eDNA的重要途径。变链菌囊泡携带Gtfs(GTF-I和GTF-SI),Gtfs与基质中eDNA相互作用促进生物膜形成[58]。通过测序发现变链菌囊泡富含与生物膜形成和膜结构稳定相关的蛋白质和长链或超长链脂肪酸,srtA可影响囊泡携带的蛋白质及脂肪酸成分[59]。变链菌囊泡的特性受TnSmu2岛内外的基因调控,sfp、srtA基因参与囊泡的形成和分泌,囊泡可促进变链菌生物膜形成[60]。笔者团队研究发现酸压力下变链菌可产生更多更小的囊泡,提示囊泡可能在酸压力应答方面起作用。外源性加入囊泡可上调变链菌生物膜的代谢活力、活菌百分比及EPS含量、黏附相关及密度感应系统相关因子的表达,有利于生物膜形成[61]。此外,变链菌囊泡可通过促进白色念珠菌对蔗糖的代谢,增加EPS含量,促进白色念珠菌生物膜形成,发挥菌间互作功能[62]。目前对变链菌囊泡的研究多围绕囊泡成分、来源及功能进行分析,尚未完全明确囊泡的作用及其可能作用机制,值得进一步研究。

除细菌外,真菌在龋病发展中亦起到重要作用。患早期儿童龋患者白色念珠菌的检出率可高达89%,而无龋儿童白色念珠菌检出率仅为2%~22%[63]。老年人根面龋损部位定植的白色念珠菌可引起局部微生态失衡,增强牙菌斑致龋毒力[64]。近年,细菌-真菌的跨界共生及相互作用亦是研究热点。研究表明,白色念珠菌通过分泌β-葡聚糖与变链菌相互作用合成胞外多糖;白色念珠菌分泌的多糖可促进变链菌黏附和混合生物膜形成,加快龋病进展,增强其严重性[65-66]

4. 展望

长久以来,包括变链菌在内的细菌学研究瓶颈较多,如细菌蛋白抗体合成困难、细菌突变株构建困难、微观结构难观测,因此大部分研究仍停留在表象研究。近年,随着研究技术的进步,对变链菌致龋相关DNA、RNA和蛋白层面的研究更加深入,这大大推动了对变链菌致龋机制的认识,此外,我们对变链菌表面结构和细菌外基质组成也有了新的理解。已有的研究结果为开发以变链菌为靶标的防龋制剂提供了更多的靶点和可能途径,如:将囊泡作为药物载体,调控生物膜形成。未来,我们应努力突破变链菌研究瓶颈,加强变链菌自身及以变链菌为首的多菌种间相互作用的研究,开发相应防龋制剂,以推动龋病防治事业的进一步发展。

*    *    *

利益冲突  所有作者均声明不存在利益冲突

Funding Statement

国家自然科学基金(No.81970928)资助

Contributor Information

冬茹 陈 (Dong-ru CHEN), Email: chendr6@mail.sysu.edu.cn.

焕彩 林 (Huan-cai LIN), Email: linhc@mail.sysu.edu.cn.

References

  • 1.GBD 2016 Disease and Injury Incidence and Prevalence Collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–1259. doi: 10.1016/S0140-6736(17)32154-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.RIGHOLT A J, JEVDJEVIC M, MARCENES W, et al Global-, regional-, and country-level economic impacts of dental diseases in 2015. J Dent Res. 2018;97(5):501–507. doi: 10.1177/0022034517750572. [DOI] [PubMed] [Google Scholar]
  • 3.王兴.第四次全国口腔健康流行病学调查报告. 北京: 人民卫生出版社, 2018:11-44.
  • 4.FAKHRUDDIN K S, NGO H C, SAMARANAYAKE L P Cariogenic microbiome and microbiota of the early primary dentition: A contemporary overview. Oral Dis. 2019;25(4):982–995. doi: 10.1111/odi.12932. [DOI] [PubMed] [Google Scholar]
  • 5.HAJISHENGALLIS E, PARSAEI Y, KLEIN M I, et al Advances in the microbial etiology and pathogenesis of early childhood caries. Mol Oral Microbiol. 2017;32(1):24–34. doi: 10.1111/omi.12152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.TAKAHASHI N, NYVAD B The role of bacteria in the caries process: Ecological perspectives. J Dent Res. 2011;90(3):294–303. doi: 10.1177/0022034510379602. [DOI] [PubMed] [Google Scholar]
  • 7.HORIUCHI M, WASHIO J, MAYANAGI H, et al Transient acid-impairment of growth ability of oral Streptococcus, Actinomyces, and Lactobacillus: A possible ecological determinant in dental plaque a possible ecological determinant in dental plaque . Oral Microbiol Immunol. 2009;24(4):319–324. doi: 10.1111/j.1399-302X.2009.00517.x. [DOI] [PubMed] [Google Scholar]
  • 8.KRZYSCIAK W, JURCZAK A, KOSCIELNIAK D, et al The virulence of Streptococcus mutans and the ability to form biofilms to form biofilms . Eur J Clin Microbiol Infect Dis. 2014;33(4):499–515. doi: 10.1007/s10096-013-1993-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.KLEIN M I, HWANG G, SANTOS P H, et al. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol, 2015, 5: 10[2021-02-17].https://doi.org/10.3389/fcimb.2015.00010.
  • 10.LEMOS J A, PALMER S R, ZENG L, et al. The Biology of Streptococcus mutans. Microbiol Spectr, 2019, 7(1): 10.1128/microbiolspec.GPP3-0051-2018[2021-02-17]. https://doi.org/10.1128/microbiolspec.GPP3-0051-2018.
  • 11.XIAO J, KLEIN M I, FALSETTA M L, et al. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog, 2012, 8(4): e1002623[2021-02-17].https://doi.org/10.1371/journal.ppat.1002623.
  • 12.GUAN N, LIU L Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol. 2020;104(1):51–65. doi: 10.1007/s00253-019-10226-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.PENG X, ZHANG Y, BAI G, et al Cyclic di-AMP mediates biofilm formation. Mol Microbiol. 2016;99(5):945–959. doi: 10.1111/mmi.13277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.MOSTERD C, MOINEAU S. Characterization of a Type Ⅱ-A CRISPR-Cas System in Streptococcus mutans. mSphere, 2020, 5(3): e00235−20[2021-02-17]. https://doi.org/10.1128/mSphere.00235-20.
  • 15.HU X, WANG Y, GAO L, et al. The impairment of methyl metabolism from luxS mutation of Streptococcus mutans. Front Microbiol, 2018, 9: 404[2021-02-17]. https://doi.org/10.3389/fmicb.2018.00404.
  • 16.LIU S, WEI Y, ZHOU X, et al Function of alanine racemase in the physiological activity and cariogenicity of Streptococcus mutans . Sci Rep. 2018;8(1):5984. doi: 10.1038/s41598-018-24295-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.WERLANG C A, CHEN W G, AOKI K, et al Mucin O-glycans suppress quorum-sensing pathways and genetic transformation in Streptococcus mutans . Nat Microbiol. 2021;6(5):574–583. doi: 10.1038/s41564-021-00876-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.LIAO S, BITOUN J P, NGUYEN A H, et al Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation . Mol Oral Microbiol. 2015;30(4):255–268. doi: 10.1111/omi.12090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.TANG B, GONG T, ZHOU X, et al Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity . Arch Oral Biol. 2019;99:190–197. doi: 10.1016/j.archoralbio.2019.01.016. [DOI] [PubMed] [Google Scholar]
  • 20.WEN Z T, SCOTT-ANNE K, LIAO S, et al Deficiency of BrpA in Streptococcus mutans reduces virulence in rat caries model . Mol Oral Microbiol. 2018;33(5):353–363. doi: 10.1111/omi.12230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.AHN S J, RICE K C Understanding the Streptococcus mutans Cid/Lrg system through CidB function . Appl Environ Microbiol. 2016;82(20):6189–6203. doi: 10.1128/AEM.01499-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.KHARA P, BISWAS S, BISWAS I Induction of clpP expression by cell-wall targeting antibiotics in Streptococcus mutans . Microbiology (Reading) 2020;166(7):641–653. doi: 10.1099/mic.0.000920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.ZU Y, LI W, WANG Q, et al ComDE two-component signal transduction systems in oral Streptococci: Structure and function . Curr Issues Mol Biol. 2019;32:201–258. doi: 10.21775/cimb.032.201. [DOI] [PubMed] [Google Scholar]
  • 24.XIANG Z, LI Z, REN Z, et al EzrA, a cell shape regulator contributing to biofilm formation and competitiveness in Streptococcus mutans . Mol Oral Microbiol. 2019;34(5):194–208. doi: 10.1111/omi.12264. [DOI] [PubMed] [Google Scholar]
  • 25.KOVACS C J, FAUSTOFERRI R C, QUIVEY R J. RgpF is required for maintenance of stress tolerance and virulence in Streptococcus mutans. J Bacteriol, 2017, 199(24): e00497−17[2021-02-17]. https://doi.org/10.1128/JB.00497-17.
  • 26.SHANKAR M, HOSSAIN M S, BISWAS I. Pleiotropic regulation of virulence genes in Streptococcus mutans by the conserved small protein SprV. J Bacteriol, 2017, 199(8): e00847−16[2021-02-17]. https://doi.org/10.1128/JB.00847-16.
  • 27.LEI L, LONG L, YANG X, et al The VicRK two-component system regulates Streptococcus mutans virulence . Curr Issues Mol Biol. 2019;32:167–200. doi: 10.21775/cimb.032.167. [DOI] [PubMed] [Google Scholar]
  • 28.ZENG L, BURNE R A. Essential roles of the sppRA fructose-phosphate phosphohydrolase operon in carbohydrate metabolism and virulence expression by Streptococcus mutans. J Bacteriol, 2019, 201(2): e00586−18[2021-02-17]. https://doi.org/10.1128/JB.00586-18.
  • 29.RAINEY K, MICHALEK S M, WEN Z T, et al. Glycosyltransferase-mediated biofilm matrix dynamics and virulence of Streptococcus mutans. Appl Environ Microbiol, 2019, 85(5): e02247−18[2021-02-17]. https://doi.org/10.1128/AEM.02247-18.
  • 30.ZENG L, CHAKRABORTY B, FARIVAR T, et al. Coordinated regulation of the EII (Man) and fruRKI operons of Streptococcus mutans by global and fructose-specific pathways. Appl Environ Microbiol, 2017, 83(21): e01403−17[2021-02-17]. https://doi.org/10.1128/AEM.01403-17.
  • 31.PALMER S R, REN Z, HWANG G, et al. Streptococcus mutans yidC1 and yidC2 impact cell envelope biogenesis, the biofilm matrix, and biofilm biophysical properties. J Bacteriol, 2019, 201(1): e00396−18[2021-02-17]. https://doi.org/10.1128/JB.00396-18.
  • 32.STRECKFUSS J L, PERKINS D, HORTON I M, et al Fluoride resistance and adherence of selected strains of Streptococcus mutans to smooth surfaces after exposure to fluoride . J Dent Res. 1980;59(2):151–158. doi: 10.1177/00220345800590021501. [DOI] [PubMed] [Google Scholar]
  • 33.BROWN L R, WHITE J O, HORTON I M, et al Effect of continuous fluoride gel use on plaque fluoride retention and microbial activity. J Dent Res. 1983;62(6):746–751. doi: 10.1177/00220345830620061201. [DOI] [PubMed] [Google Scholar]
  • 34.CAI Y, LIAO Y, BRANDT B W, et al. The Fitness cost of fluoride resistance for different Streptococcus mutans strains in biofilms. Front Microbiol, 2017, 8: 1630[2021-02-17]. https://doi.org/10.3389/fmicb.2017.01630.
  • 35.盛江筠, 黄正蔚, 刘正 变形链球菌耐氟菌株与亲代菌株质子移位膜ATP酶活性的比较. 上海口腔医学. 2005;(1):71–73. doi: 10.3969/j.issn.1006-7248.2005.01.019. [DOI] [Google Scholar]
  • 36.LIAO Y, BRANDT B W, LI J, et al. Fluoride resistance in Streptococcus mutans: A mini review. J Oral Microbiol, 2017, 9(1): 1344509[2021-02-17]. https://doi.org/10.1080/20002297.2017.1344509.
  • 37.LIAO Y, CHEN J, BRANDT B W, et al. Identification and functional analysis of genome mutations in a fluoride-resistant Streptococcus mutans strain. PLoS One, 2015, 10(4): e122630[2021-02-17]. https://doi.org/10.1371/journal.pone.0122630.
  • 38.YU J, WANG Y, HAN D, et al Identification of Streptococcus mutans genes involved in fluoride resistance by screening of a transposon mutant library . Mol Oral Microbiol. 2020;35(6):260–270. doi: 10.1111/omi.12316. [DOI] [PubMed] [Google Scholar]
  • 39.DUTTA T, SRIVASTAVA S Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms. Gene. 2018;656:60–72. doi: 10.1016/j.gene.2018.02.068. [DOI] [PubMed] [Google Scholar]
  • 40.XIA L, XIA W, LI S, et al Identification and expression of small non-coding RNA, L10-leader, in different growth phases of Streptococcus mutans . Nucleic Acid Ther. 2012;22(3):177–186. doi: 10.1089/nat.2011.0339. [DOI] [PubMed] [Google Scholar]
  • 41.LEE H J, HONG S H Analysis of microRNA-size, small RNAs in Streptococcus mutans by deep sequencing . FEMS Microbiol Lett. 2012;326(2):131–136. doi: 10.1111/j.1574-6968.2011.02441.x. [DOI] [PubMed] [Google Scholar]
  • 42.MAO M Y, YANG Y M, LI K Z, et al. The rnc gene promotes exopolysaccharide synthesis and represses the vicRKX gene expressions via microRNA-size small RNAs in Streptococcus mutans. Front Microbiol, 2016, 7: 687[2021-02-17]. https://doi.org/10.3389/fmicb.2016.00687.
  • 43.LIU S, TAO Y, YU L, et al Analysis of small RNAs in Streptococcus mutans under acid stress—A new insight for caries research . Int J Mol Sci. 2016;17(9):1529. doi: 10.3390/ijms17091529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.LIU S S, ZHU W H, ZHI Q H, et al Analysis of sucrose-induced small RNAs in Streptococcus mutans in the presence of different sucrose concentrations . Appl Microbiol Biotechnol. 2017;101(14):5739–5748. doi: 10.1007/s00253-017-8346-x. [DOI] [PubMed] [Google Scholar]
  • 45.ZHU W, LIU S, LIU J, et al High-throughput sequencing identification and characterization of potentially adhesion-related small RNAs in Streptococcus mutans . J Med Microbiol. 2018;67(5):641–651. doi: 10.1099/jmm.0.000718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.LIU S, ZHOU Y, TAO Y, et al Effect of different glucose concentrations on small RNA levels and adherence of Streptococcus mutans . Curr Microbiol. 2019;76(11):1238–1246. doi: 10.1007/s00284-019-01745-1. [DOI] [PubMed] [Google Scholar]
  • 47.YIN L, ZHU W, CHEN D, et al. Small noncoding RNA sRNA0426 is involved in regulating biofilm formation in Streptococcus mutans. Microbiologyopen, 2020, 9(9): e1096[2021-02-17]. https://doi.org/10.1002/mbo3.1096.
  • 48.GALLO P M, RAPSINSKI G J, WILSON R P, et al Amyloid-DNA composites of bacterial biofilms stimulate autoimmunity. Immunity. 2015;42(6):1171–1184. doi: 10.1016/j.immuni.2015.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.TAGLIALEGNA A, LASA I, VALLE J Amyloid structures as biofilm matrix scaffolds. J Bacteriol. 2016;198(19):2579–2588. doi: 10.1128/JB.00122-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.OLI M W, OTOO H N, CROWLEY P J, et al Functional amyloid formation by Streptococcus mutans . Microbiology. 2012;158(Pt 12):2903–2916. doi: 10.1099/mic.0.060855-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.BESINGI R N, WENDERSKA I B, SENADHEERA D B, et al Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c . Microbiology. 2017;163(4):488–501. doi: 10.1099/mic.0.000443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.HEIM K P, SULLAN R M, CROWLEY P J, et al Identification of a supramolecular functional architecture of Streptococcus mutans adhesin P1 on the bacterial cell surface . J Biol Chem. 2015;290(14):9002–9019. doi: 10.1074/jbc.M114.626663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.RIVIERE G, PENG E Q, BROTGANDEL A, et al Characterization of an intermolecular quaternary interaction between discrete segments of the Streptococcus mutans adhesin P1 by NMR spectroscopy . FEBS J. 2020;287(12):2597–2611. doi: 10.1111/febs.15158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.CHEN D, CAO Y, YU L, et al Characteristics and influencing factors of amyloid fibers in S. mutans biofilm . AMB Express. 2019;9(1):31. doi: 10.1186/s13568-019-0753-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.SCHWARTZ K, GANESAN M, PAYNE D E, et al Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms . Mol Microbiol. 2016;99(1):123–134. doi: 10.1111/mmi.13219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.CAO Y, LIN H Characterization and function of membrane vesicles in Gram-positive bacteria. Appl Microbiol Biotechnol. 2021;105(5):1795–1801. doi: 10.1007/s00253-021-11140-1. [DOI] [PubMed] [Google Scholar]
  • 57.LIAO S, KLEIN M I, HEIM K P, et al Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery . J Bacteriol. 2014;196(13):2355–2366. doi: 10.1128/JB.01493-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.SENPUKU H, NAKAMURA T, IWABUCHI Y, et al Effects of complex DNA and MVs with GTF extracted from Streptococcus mutans on the oral biofilm . Molecules. 2019;24(17):3131. doi: 10.3390/molecules24173131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.MORALES-APARICIO J C, LARA V P, MISHRA S, et al. The impacts of sortase A and the 4′-phosphopantetheinyl transferase homolog Sfp on Streptococcus mutans extracellular membrane vesicle biogenesis. Front Microbiol, 2020, 11: 570219[2021-02-17]. https://doi.org/10.3389/fmicb.2020.570219.
  • 60.WEN Z T, JORGENSEN A N, HUANG X, et al Multiple factors are involved in regulation of extracellular membrane vesicle biogenesis in Streptococcus mutans . Mol Oral Microbiol. 2021;36(1):12–24. doi: 10.1111/omi.12318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.CAO Y, ZHOU Y, CHEN D, et al Proteomic and metabolic characterization of membrane vesicles derived from Streptococcus mutans at different pH values . Appl Microbiol Biotechnol. 2020;104(22):9733–9748. doi: 10.1007/s00253-020-10563-6. [DOI] [PubMed] [Google Scholar]
  • 62.WU R, TAO Y, CAO Y, et al. Streptococcus mutans membrane vesicles harboring glucosyltransferases augment candida albicans biofilm development. Front Microbiol, 2020, 11: 581184[2021-02-17]. https://doi.org/10.3389/fmicb.2020.581184.
  • 63.XIAO J, HUANG X, ALKHERS N, et al Candida albicansand early childhood caries: A systematic review and meta-analysis . Caries Res. 2018;52(1/2):102–112. doi: 10.1159/000481833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.DU Q, REN B, HE J, et al Candida albicans promotes tooth decay by inducing oral microbial dysbiosis . ISME J. 2021;15(3):894–908. doi: 10.1038/s41396-020-00823-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.KHOURY Z H, VILA T, PUTHRAN T R, et al. The role of Candida albicans secreted polysaccharides in augmenting Streptococcus mutans adherence and mixed biofilm formation: In vitro and in vivo studies. Front Microbiol, 2020, 11: 307[2021-02-17]. https://doi.org/10.3389/fmicb.2020.00307.
  • 66.FALSETTA M L, KLEIN M I, COLONNE P M, et al Symbiotic relationship between Streptococcus mutans andCandida albicanssynergizes virulence of plaque biofilms in vivo . Infect Immun. 2014;82(5):1968–1981. doi: 10.1128/IAI.00087-14. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)

RESOURCES