Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1979 Oct;63(10):657–668. doi: 10.1136/bjo.63.10.657

A comparative histopathological study of argon and krypton laser irradiations of the human retina.

J Marshall, A C Bird
PMCID: PMC1043587  PMID: 574395

Abstract

A series of comparative exposures to both argon and krypton lasers have been made at 3 locations in a human retina--the fovea, the macula, and intraretinal vessels. In the fovea argon irradiations resulted in damage to both the inner and outer retinal layers as a result of absorption within the pigment epithelium and the macular pigment, while krypton exposures damaged the outer retina and the choroid. In the macula both systems resulted in damage to the outer retina, and again sufficient krypton radiation passed into the choroid to induce blood vessel occlusion, haemorrhage, and oedema. When intraretinal vessels were irradiated, only with argon was sufficient energy absorbed within the vessels to damage them or their surroundings in the inner retina. The implications of these findings are discussed in relation to the therapeutic uses of lasers.

Full text

PDF
658

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird A. C. Recent advances in the treatment of senile disciform macular degeneration by photocoagulation. Br J Ophthalmol. 1974 Apr;58(4):367–376. doi: 10.1136/bjo.58.4.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bone R. A., Sparrock J. M. Comparison of macular pigment densities in human eyes. Vision Res. 1971 Oct;11(10):1057–1064. doi: 10.1016/0042-6989(71)90112-x. [DOI] [PubMed] [Google Scholar]
  3. Borland R. G., Brennan D. H., Marshall J., Viveash J. P. The role of fluorescein angiography in the detection of laser-induced damage to the retina: a threshold study for Q-switched, neodymium and ruby lasers. Exp Eye Res. 1978 Oct;27(4):471–493. doi: 10.1016/0014-4835(78)90025-8. [DOI] [PubMed] [Google Scholar]
  4. Bowbyes J. A., Hamilton A. M., Bird A. C., Blach R. K., Marshall J., Kohner E. M. The argon laser-the effect on retinal tissues and its clinical applications. Trans Ophthalmol Soc U K. 1973;93(0):439–453. [PubMed] [Google Scholar]
  5. Foulds W. S. Doyne Memorial Lecture, 1976. Clinical significance of trans-scleral fluid transfer. Trans Ophthalmol Soc U K. 1976 Jul;96(2):290–308. [PubMed] [Google Scholar]
  6. Gabel V. P., Birngruber R., Hillenkamp F. Individuelle Unterschiede der Lichtabsorption am Augenhintergrund im sichtbaren und infrarotin Spektralbereich. Ber Zusammenkunft Dtsch Ophthalmol Ges. 1977;74:418–421. [PubMed] [Google Scholar]
  7. Gass J. D. Drusen and disciform macular detachment and degeneration. Arch Ophthalmol. 1973 Sep;90(3):206–217. doi: 10.1001/archopht.1973.01000050208006. [DOI] [PubMed] [Google Scholar]
  8. Gass J. D. Photocoagulation of macular lesions. Trans Am Acad Ophthalmol Otolaryngol. 1971 May-Jun;75(3):580–608. [PubMed] [Google Scholar]
  9. Geeraets W. J., Berry E. R. Ocular spectral characteristics as related to hazards from lasers and other light sources. Am J Ophthalmol. 1968 Jul;66(1):15–20. doi: 10.1016/0002-9394(68)91780-7. [DOI] [PubMed] [Google Scholar]
  10. Ham W. T., Jr, Ruffolo J. J., Jr, Mueller H. A., Clarke A. M., Moon M. E. Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. Invest Ophthalmol Vis Sci. 1978 Oct;17(10):1029–1035. [PubMed] [Google Scholar]
  11. L'Esperance F. A., Jr An opthalmic argon laser photocoagulation system: design, construction, and laboratory investigations. Trans Am Ophthalmol Soc. 1968;66:827–904. [PMC free article] [PubMed] [Google Scholar]
  12. Little H. L., Zweng H. C., Peabody R. R. Argon laser slit-lamp retinal photocoagulation. Trans Am Acad Ophthalmol Otolaryngol. 1970 Jan-Feb;74(1):85–97. [PubMed] [Google Scholar]
  13. Manson N., Marshall J., Mellerio J., Smart D. Comments on histological studies of gas laser lesions in humans and possible non-linear optical phenomena, together with experiments using a tuneable dye laser. Mod Probl Ophthalmol. 1972;10:114–128. [PubMed] [Google Scholar]
  14. Marshall J., Hamilton A. M., Bird A. C. Histopathology of ruby and argon laser lesions in monkey and human retina. A comparative study. Br J Ophthalmol. 1975 Nov;59(11):610–630. doi: 10.1136/bjo.59.11.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marshall J., Hamilton A. M., Bird A. C. Intra-retinal absorption of argon laser irradiation in human and monkey retinae. Experientia. 1974 Nov 15;30(11):1335–1337. doi: 10.1007/BF01945217. [DOI] [PubMed] [Google Scholar]
  16. Marshall J., Mellerio J. Laser irradiation of retinal tissue. Br Med Bull. 1970 May;26(2):156–160. doi: 10.1093/oxfordjournals.bmb.a070768. [DOI] [PubMed] [Google Scholar]
  17. Marshall J., Mellerio J. Pathological development of retinal laser photocoagulations. Exp Eye Res. 1967 Oct;6(4):303–308. doi: 10.1016/s0014-4835(67)80002-2. [DOI] [PubMed] [Google Scholar]
  18. Marshall J. Thermal and mechanical mechanisms in laser damage to the retina. Invest Ophthalmol. 1970 Feb;9(2):97–115. [PubMed] [Google Scholar]
  19. McLeod D., Marshall J., Kohner E. M., Bird A. C. The role of axoplasmic transport in the pathogenesis of retinal cotton-wool spots. Br J Ophthalmol. 1977 Mar;61(3):177–191. doi: 10.1136/bjo.61.3.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. OKUN E., COLLINS E. M. Histopathology of experimental photocoagulation in the dog eye. II. Production of cytoid body lesions. Am J Ophthalmol. 1962 Nov;54:786–793. doi: 10.1016/0002-9394(62)94160-0. [DOI] [PubMed] [Google Scholar]
  21. RUDDOCK K. H. EVIDENCE FOR MACULAR PIGMENTATION FROM COLOUR MATCHING DATA. Vision Res. 1963 Dec;61:417–429. doi: 10.1016/0042-6989(63)90093-2. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES