Skip to main content
Foods logoLink to Foods
. 2023 Aug 9;12(16):3001. doi: 10.3390/foods12163001

Simultaneous Screening of 322 Residual Pesticides in Fruits and Vegetables Using GC-MS/MS and Deterministic Health Risk Assessments

Byong-Sun Choi 1,, Dong-Uk Lee 2,, Woo-Seong Kim 3, Chan-Woong Park 3, Won-Jo Choe 4,*, Myung-Jun Moon 1,*
Editor: Yanawath Santaladchaiyakit
PMCID: PMC10453053  PMID: 37628000

Abstract

The development of efficient methods for evaluating pesticide residues is essential in order to ensure the safety and quality of agricultural products since the Republic of Korea implemented the Positive List System (PLS). The objective of this research was to establish a method for the simultaneous analysis of 322 pesticide residues in fruits and vegetables (such as coffee, potato, corn, and chili pepper), using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach in combination with gas chromatography-tandem mass spectrometry (GC-MS/MS). This study introduces a robust, high-throughput GC-MS/MS method for screening the target pesticide residues in agricultural products, achieving the PLS criterion of 0.01 mg/kg LOQ. Despite some compounds not aligning with the CODEX recovery guideline, sufficient reproducibility was confirmed, attesting to the method’s applicability in qualitative analyses. A health risk assessment conducted using estimated daily intake/acceptable daily intake ratios indicated low risks associated with product consumption (<0.035391%), thereby confirming their safety. This efficient method holds significant implications for the safe distribution of agricultural products, including during import inspections.

Keywords: multiresidue pesticide analysis, food safety, QuEChERS, agricultural product, mass spectrometry

1. Introduction

Pesticides are essential substances in agriculture that protect crops against harmful insects to maximize yields and enhance the quality of agricultural products. Despite the apparent benefits of pesticides, their indiscriminate use causes problems because residues in agricultural products can have adverse effects on human health and cause environmental pollution [1,2,3]. The agricultural products in each country are cultivated according to the individual conditions in that country, and the type of pesticide used varies according to the environment and the type of pest emerging during the cultivation period [4,5]. Hence, each country defines their own maximum residue limits (MRLs) for agricultural products to ensure efficient and rigorous pesticide management and control, to guarantee the safety of domestic and imported agricultural products, and to conduct continuous monitoring of the agricultural products being distributed [6,7]. In addition, consumers often base decisions regarding the purchase of agricultural products on health and safety concerns; therefore, restricting the use of pesticides on agricultural products and analyzing for pesticide residues are important.

Pesticide residue analyses are broadly classified into individual methods and multiclass multiresidue methods (MRMs) based on the purpose of the analysis [8,9]. Individual methods are highly reliable because the analysis is optimized for individual compounds; however, these methods are less frequently applied for pesticide residue analysis, owing to the time and cost required for detecting multiple pesticides [10,11]. In contrast, MRMs aim to analyze different classes of pesticides in a single analysis, which is conducive for the rapid processing of a large number of agricultural products [8,12]. Based on this efficiency, MRMs are mainly used in the routine monitoring of various pesticide residues and are widely used worldwide for the safety management of pesticide residues [13,14].

In the field of multi-pesticide residue analysis, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC) techniques are acceptable. Especially, GC-MS or GC-tandem MS (GC-MS/MS) offers high sensitivity and selectivity, a broad analytical spectrum, quantitative accuracy, exceptional resolution, and fast measurement speed, as well as high-quality identification of various substances. However, a highly suitable sample preparation approach such as quick, easy, cheap, effective, rugged, and safe (QuEChERS) has been recognized and is required before instrumental analysis [15,16,17]. In contrast to the long extraction times required when using organic solvents to extract pesticides from different samples, the analysis time and processing steps are minimized in QuEChERS, which still exhibits high recoveries of 60–120% for various nonpolar and polar pesticides [18,19,20]. Since its adoption as an Association of Official Analytical Chemists (AOAC) method in 2003, the recently improved QuEChERS method has been approved as an official method of analysis in a number of European countries (EN 15662 method) (Figure 1) [21].

Figure 1.

Figure 1

Procedure of types of QuEChERS methods.

Several previous studies have developed MRMs using the QuEChERS method to analyze various pesticides [22,23,24]; however, for such MRMs to be utilized in the Republic of Korea, these methods must be validated for foods frequently consumed by Koreans [25,26,27,28,29]. In 2019, the government of the Republic of Korea introduced the Positive List System (PLS), which applies a uniform MRL criterion (0.01 mg/kg) to all imported agricultural products for which a specific MRL has not been established in Korea. Moreover, mandatory testing of pesticide residues on imported agricultural products has been instituted. Nevertheless, numerous pesticides still lack established analytical standards from the Korean Ministry of Food and Drug Safety (Figure 2 and Table S1).

Figure 2.

Figure 2

Analytical method for MRMs of the Korean Food Standards Codex.

This study undertook the challenge of simultaneously screening 322 pesticides (359 compounds in total, including isomers and metabolites) that are predominantly used in Korean agriculture. The screening was conducted using GC-MS/MS and validated on four types of agricultural products that are heavily imported and frequently consumed in the Republic of Korea: coffee, potato, corn, and chili pepper [28,29,30,31]. Given the dietary habits of Koreans, these agricultural products are particularly suitable for a study aimed at minimizing the health risks posed by residual pesticides. The Limit of Quantification (LOQ) of the method satisfied the PLS criterion of 0.01 mg/kg, and the linearity, accuracy, and precision of the method were verified. Therefore, the findings of this study could significantly contribute to the development of screening standards and safety management, and aid in food safety management in Korea.

2. Materials and Methods

2.1. Chemicals and Reagents

The standard materials of 322 pesticides (359 compounds in total, including isomers and metabolites) used in the analysis were purchased from AccuStandard (New Haven, CT, USA), Chemservice (West Chester, PA, USA), Dr. Ehrenstorfer (Augsburg, Germany), Wako (Osaka, Japan), Fluka (Udligenswil, Switzerland), Sigma-Aldrich (St. Louis, MO, USA), and Supelco (Bellefonte, PA, USA). The acetonitrile (ACN) and acetone used in the extraction and purification processes were high-purity GC- or pesticide residue-grade solvents purchased from Merck (Darmstadt, Germany). The solid-phase extraction (SPE) kit, used in this study, was purchased from Applied Separation (Hamilton, PA, USA). Polytetrafluoroethylene membrane filters (PTFE, 0.2 μm) and EN QuEChERS salts (QuEChERS EN 15662 Method Extraction Kits) were purchased from Thermo Fisher Scientific (Waltham, MA, USA).

2.2. Standard Solutions

The 322 standard pesticide solutions (1000 mg/L) were separately prepared in 20 mL of acetone. The commercial standard solutions were also purchased and kept at −18 °C until use. The working standard solution comprised a mixture of each standard stock solution diluted to a set certain concentration with acetone in a brown bottle and stored at 4 °C. The working solution was diluted before use in each analysis.

2.3. Analysis by GC–Triple Quadrupole MS/MS

The GC system used for the simultaneous analysis of the pesticide residues was a GC-2010 (Shimadzu, Japan) with a split/splitless injector (SSI) and MS/MS systems (TQ8040, Shimadzu, Japan). The column used to separate the pesticide compounds was a DB-5MS (30 m × 0.25 mm × 0.25 μm, Agilent, Santa Clara, CA, USA). The GC was operated in splitless mode to analyze the 322 pesticide compounds in a 2 μL injection. To ensure the efficient separation of the compounds on the GC column, the initial oven temperature was set at 70 °C, which was maintained for 1 min at 0.8 mL/min of the He carrier gas. The temperature was then increased at a constant rate to a final temperature of 300 °C, which enabled the separation of 322 pesticides within 40 min. The detailed measurement conditions are shown in Table 1.

Table 1.

Instrumental conditions for the analyses of pesticides.

Instrument GC-2010 GC body with
AOC-20i plus autoinjector (Shimadzu, Japan)
Injection vol., mode 2 μL, split/splitless
Column HP-5 ms, 30 m × 0.25 mm i.d., 0.25 μm
(Agilent US)
Carrier Gas Helium (0.8 mL/min)
Column oven Rate (°C/min) Temp (°C) Hold (min) Total (min)
Initial 70 3 3
20 180 0 8.5
5 300 7.5 40
Scan MRM mode
Source Temp.: 200 °C; Detector Temp. (transfer line): 250 °C

After separating the compounds on the capillary column, they were ionized using positive mode electron ionization (EI) at 70 eV, which is commonly used in pesticide residue analysis. The conditions were as follows: source temperature, 200 °C; transfer line temperature, 250 °C; manifold temperature, 40 °C; and detector voltage, 1400 V. The compounds were detected using the multiple reaction monitoring (MRM) mode, with a solvent delay of 3 min to protect the detector by allowing the solvent to pass through. The He carrier gas and Ar collision cell gas both had a purity of ≥99.999%.

Table 2 presents the optimal MRM conditions for the 322 pesticide compounds (Figure S2). To establish the optimal MRM analysis conditions, the 322 pesticides were thoroughly mixed and prepared to a 5 mg/L working standard solution. The solution was injected into the device in full scan mode (Figure 3), and the total ion chromatogram (TIC), mass spectrum, and retention time were obtained for each pesticide. Since the molecular masses of all 322 pesticide compounds were ≤500, the full scan range was set at 50–500 m/z, and each spectrum was compared with that of known pesticide compounds in the NIST library to confirm the similarity and verify an accuracy of the qualitative information for each pesticide.

Table 2.

GC-MS/MS parameters for the analysis of 322 pesticides.

No. Pesticides RT
(min)
MRM Transitions
Quantitative Ion CE
(eV)
Qualitative Ion 1 CE
(eV)
Qualitative Ion 2 CE
(eV)
1 2,6-Diisoporpylnaphthalene 9.665 197 > 155 12 212 > 197 15 212 > 155 24
2 Acetochlor 12.088 223 > 147 10 223 > 132 20 146 > 131 20
3 Acibenzola_s_methyl 12.318 182 > 152 30 182 > 135 20 182 > 107 35
4 Acrinathrin_1 23.502 208 > 181 5 208 > 152 30 181 > 152 40
Acrinathrin_2 23.93 208 > 181 5 208 > 152 30 181 > 152 40
5 Alachlor 12.402 188 > 160 10 188 > 132 20 188 > 131 20
6 Aldrin 13.491 263 > 193 33 263 > 191 39 293 > 186 39
7 Allethrin-1 15.017 123 > 81 9 123 > 79 15 136 > 93 14
Allethrin-2 15.161 123 > 81 9 123 > 79 15 136 > 93 14
8 Allidochlor 5.087 138 > 96 6 96 > 56 9 138 > 81 9
9 Ametryn 12.405 227 > 170 12 227 > 185 6 227 > 58 14
10 Anilofos 22.092 226 > 157 15 226 > 184 9 154 > 118 27
11 Aramit-1 17.238 175 > 135 15 175 > 107 25 N.D.
Aramit-2 17.604 175 > 135 15 175 > 107 25 N.D.
12 Aspon 13.618 211 > 115 15 211 > 97 27 253 > 115 21
13 Atrazine 9.915 215 > 58 15 215 > 173 9 200 > 122 12
14 Azaconazole 17.301 217 > 173 21 173 > 145 18 217 > 145 30
15 Azinphos-ethyl 23.858 160 > 132 6 132 > 77 15 160 > 77 24
16 Azinphos-methyl 22.618 160 > 132 5 160 > 77 20 132 > 77 15
17 Benalaxyl 19.319 148 > 105 18 148 > 77 30 148 > 79 24
18 Benodanil 18.589 231 > 203 15 323 > 231 15 231 > 76 36
19 Benoxacor 11.467 120 > 93 20 120 > 77 20 120 > 65 20
20 Benzoylprop_ethyl 21.015 105 > 77 15 105 > 51 27 292 > 105 9
21 BHC_alpha 9.353 181 > 145 15 219 > 183 9 181 > 109 30
BHC_beta 10.06 181 > 145 15 219 > 183 12 181 > 109 30
BHC_delta 10.921 181 > 145 15 219 > 183 12 181 > 109 30
BHC_gamma 10.252 181 > 145 15 219 > 183 12 181 > 109 30
22 Bifenox 22.007 341 > 310 10 341 > 281 12 N.D.
23 Bifenthrin 21.574 181 > 166 15 181 > 165 30 181 > 179 12
24 Bromacil 13.053 207 > 190 15 205 > 188 15 205 > 162 15
25 Bromobutide 11.958 119 > 91 12 119 > 65 27 103 > 77 15
26 Bromophos-ethyl 15.768 359 > 303 15 303 > 285 15 242 > 97 30
27 Bromophos-methyl 14.304 331 > 316 15 125 > 79 6 331 > 286 27
28 Bromopropylate 21.378 183 > 155 15 341 > 183 15 341 > 185 20
29 Bupirimate 17.397 273 > 193 8 273 > 150 8 N.D.
30 Butachlor 16.186 176 > 147 15 176 > 134 15 176 > 158 15
31 Butafenacil 25.678 331 > 180 18 180 > 124 21 180 > 152 10
32 Butralin 14.295 266 > 220 12 266 > 174 27 266 > 190 18
33 Butylate 6.153 156 > 57 12 146 > 90 9 146 > 57 12
34 Cadusafos 9.077 159 > 131 9 159 > 97 21 125 > 97 9
35 Captan 15.07 149 > 70 20 151 > 80 5 151 > 79 15
36 Carbophenothion 19.226 121 > 65 15 157 > 121 27 157 > 45 18
37 Chinomethionat 15.532 206 > 148 15 234 > 206 9 234 > 148 27
38 Chlorbenside 15.42 125 > 99 20 125 > 89 20 125 > 63 40
39 Chlorbufam 9.83 153 > 125 15 153 > 90 24 N.D.
40 Chlordane_1 16.117 373 > 264 18 373 > 266 30 237 > 165 36
Chlordane_2 15.604 373 > 264 18 373 > 266 30 237 > 165 36
41 Chlorethoxyfos 8.252 153 > 97 12 125 > 97 9 153 > 125 6
42 Chlorfenapyr 17.835 137 > 102 15 137 > 75 30 247 > 177 15
43 Chlorfenson 16.363 175 > 111 12 302 > 175 9 302 > 111 24
44 Chlorfluazuron 16.377 321 > 304 21 323 > 306 33 N.D.
45 Chlorflurenol_methyl 15.533 215 > 152 27 152 > 151 24 215 > 187 15
46 Chlornitrofen 19.112 317 > 287 10 317 > 236 10 317 > 196 30
47 Chlorobenzilate 18.014 251 > 139 10 251 > 111 40 139 > 111 10
48 Chloroneb 6.935 206 > 191 12 206 > 141 21 193 > 113 18
49 Chloropropylate 18.014 139 > 111 12 251 > 111 26 139 > 75 26
50 Chloroxuron 12.566 245 > 182 10 245 > 154 25 245 > 111 25
51 Chlorpropham 8.546 213 > 171 10 213 > 127 5 127 > 100 15
52 Chlorpyrifos 13.738 197 > 169 15 199 > 171 15 314 > 258 18
53 Chlorpyrifos-methyl 12.158 286 > 93 24 125 > 79 6 286 > 271 15
54 Chlorthal-dimethyl 13.895 301 > 223 21 332 > 301 15 301 > 273 14
55 Chlorthalonil 11.05 266 > 231 20 266 > 168 30 266 > 133 40
56 Chlorthion 14.062 125 > 79 9 109 > 79 12 297 > 109 15
57 Chlorthiophos_1 18.647 325 > 269 15 325 > 324 6 269 > 177 21
Chlorthiophos_2 18.647 325 > 269 15 269 > 205 18 325 > 205 30
58 Chlozolinate 14.974 187 > 124 21 331 > 259 6 187 > 159 12
59 Cinidone_ethyl 31.596 358 > 330 10 330 > 302 25 330 > 222 35
60 Cinmethylin 12.538 105 > 77 18 123 > 81 9 105 > 79 12
61 Clomazon 10.035 204 > 107 25 125 > 99 25 125 > 89 25
62 Clomeporp 22.119 148 > 120 5 288 > 120 25 288 > 169 10
63 Coumaphos 25.193 362 > 109 20 226 > 163 10 210 > 182 5
64 Crotoxyphos 15.422 193 > 127 20 166 > 127 5 127 > 109 20
65 Cyanazine 13.717 225 > 189 15 225 > 172 15 172 > 94 15
66 Cyanophos 10.365 109 > 79 9 125 > 79 9 243 > 109 9
67 Cycloate 8.4 83 > 55 9 154 > 83 9 154 > 55 24
68 Cyflufenamid 17.768 91 > 65 15 118 > 90 12 118 > 89 27
69 Cyfluthrin-1 25.995 163 > 127 9 163 > 91 21 226 > 199 9
Cyfluthrin-2 26.178 163 > 127 9 163 > 91 21 226 > 199 9
Cyfluthrin-3 26.324 163 > 127 9 163 > 91 21 226 > 199 9
Cyfluthrin-4 26.404 163 > 127 9 163 > 91 21 226 > 199 9
70 Cyhalofop-butyl 23.058 256 > 120 10 229 > 109 15 120 > 91 15
71 Cyhalothrin-1 23.129 208 > 181 8 197 > 141 6 197 > 161 6
Cyhalothrin-2 23.504 208 > 181 8 197 > 141 6 197 > 161 6
72 Cypermethrin-1 26.58 163 > 127 6 181 > 152 27 181 > 127 27
Cypermethrin-2 26.773 163 > 127 6 181 > 152 27 181 > 127 27
Cypermethrin-3 26.914 163 > 127 6 181 > 152 27 181 > 127 27
Cypermethrin-4 26.987 163 > 127 6 181 > 152 27 181 > 127 27
73 Cyprazine 11.836 227 > 212 10 212 > 170 10 212 > 109 25
74 Cyproconazole-1 17.615 139 > 111 18 139 > 75 27 N.D.
Cyproconazole-2 17.615 139 > 111 18 222 > 125 27 139 > 75 27
75 Cyprodinil 14.554 224 > 208 18 224 > 118 36 210 > 93 15
76 DDD_pp 18.312 235 > 165 21 235 > 199 21 235 > 163 36
DDE_pp 16.88 246 > 176 30 318 > 248 18 318 > 246 33
DDT_op 18.422 235 > 165 27 235 > 199 15 237 > 165 24
DDT_pp 19.599 235 > 165 18 235 > 199 12 237 > 165 27
77 Deltamethrin-1 29.329 181 > 152 24 253 > 93 24 253 > 172 9
Deltamethrin-2 29.719 181 > 152 24 253 > 93 24 253 > 172 9
78 Demeton_O 8.157 171 > 115 10 115 > 97 10 88 > 60 5
79 Demeton_S 9.605 170 > 114 5 88 > 60 5 N.D.
80 Demeton_S_methylsulfone 12.742 169 > 125 5 169 > 109 10 N.D.
81 Desmetryn 11.73 213 > 58 12 213 > 171 6 198 > 108 12
82 Diafor 24.099 208 > 89 25 173 > 104 10 N.D.
83 Diallate-1 9.177 234 > 150 21 128 > 86 6 234 > 192 15
Diallate-2 9.41 234 > 150 21 234 > 192 15 128 > 86 6
84 Diazinon 10.708 137 > 84 15 137 > 54 27 179 > 137 18
85 Dichlofenthion 11.865 279 > 223 15 223 > 205 15 223 > 159 21
86 Dichlofluanid 13.294 123 > 77 18 224 > 123 20 224 > 77 40
87 Dichlormid 5.591 172 > 108 9 172 > 56 18 172 > 96 9
88 Dichlorvos 4.796 109 > 79 9 185 > 93 15 185 > 63 24
89 Diclobutrazole 17.235 272 > 161 10 270 > 201 5 270 > 159 10
90 Diclofop_methyl 20.224 340 > 253 15 253 > 162 20 340 > 281 15
91 Dicloran 9.644 206 > 176 15 176 > 148 12 206 > 124 27
92 Dicofol 13.792 139 > 111 18 139 > 75 30 250 > 139 15
93 Dieldrin 16.896 263 > 193 27 279 > 243 15 263 > 203 21
94 Diethatyl-ethyl 16.463 188 > 160 9 188 > 131 21 188 > 130 33
95 Diethofencarb 13.532 124 > 96 9 151 > 123 12 151 > 77 24
96 Difenoconazole-1 29.057 323 > 265 15 323 > 202 35 265 > 202 20
Difenoconazole-2 29.183 323 > 265 15 323 > 202 35 265 > 202 20
97 Diflufenican 20.35 394 > 266 18 266 > 246 15 266 > 183 21
98 Dimepiperate 15.181 119 > 91 12 103 > 77 12 145 > 69 18
99 Dimethachlor 11.891 134 > 105 15 134 > 77 30 197 > 148 9
100 Dimethametryn 14.8 212 > 122 15 212 > 142 15 255 > 212 20
101 Dimethenamid 11.93 230 > 154 12 154 > 111 12 203 > 126 21
102 Dimethoate 9.669 143 > 111 10 125 > 79 5 125 > 47 20
103 Dimethylvinphos-(E) 13.231 295 > 109 12 297 > 109 21 N.D.
Dimethylvinphos-(Z) 13.682 295 > 109 12 297 > 109 21 N.D.
104 Diniconazole 18.194 268 > 232 15 268 > 136 33 232 > 150 21
105 Dinitramine 10.922 261 > 195 24 261 > 241 6 305 > 230 12
106 Dioxathion 10.25 125 > 97 9 97 > 65 18 97 > 79 15
107 Diphenamid 14.334 167 > 152 18 167 > 165 30 152 > 151 21
108 Diphenylamine 8.24 169 > 66 21 169 > 77 30 169 > 141 27
109 Dithiopyr 12.948 354 > 286 15 354 > 306 12 306 > 286 9
110 Edifenphos 19.364 173 > 109 12 109 > 65 18 109 > 69 27
111 Endosulfan_alphs 16.012 195 > 159 12 195 > 160 15 195 > 125 27
112 Endosulfan_beta 17.957 195 > 159 6 195 > 160 9 195 > 125 27
Endosulfan_sulfate 19.436 272 > 165 36 237 > 116 18 N.D.
113 Endrin 17.633 263 > 191 27 263 > 193 30 263 > 228 21
114 EPN 21.405 169 > 141 9 169 > 77 27 157 > 110 15
115 Epoxiconazole 20.688 192 > 138 12 192 > 111 21 192 > 102 30
116 EPTC 5.561 128 > 86 6 189 > 128 6 189 > 86 12
117 Esprocarb 13.157 222 > 91 15 91 > 65 18 222 > 151 6
118 Etaconazole_1 18.221 173 > 145 18 173 > 109 27 245 > 55 15
Etaconazole_2 18.35 173 > 145 15 173 > 109 27 245 > 55 15
119 Ethalfluralin 8.657 276 > 202 18 276 > 105 30 316 > 276 6
120 Ethion 18.543 231 > 129 24 153 > 97 12 231 > 175 15
121 Ethofumesate 13.133 161 > 105 12 161 > 133 6 286 > 207 9
122 Ethoprophos 8.372 200 > 158 6 158 > 97 15 158 > 114 9
123 Ethychlozate 14.838 165 > 102 20 165 > 111 25 165 > 138 20
124 Etofenprox 27.124 163 > 135 12 163 > 107 21 135 > 107 10
125 Etoxazole 21.853 141 > 113 15 141 > 63 24 300 > 270 21
126 Etridiazole 6.442 211 > 140 24 211 > 183 12 N.D.
127 Etrimfos 11.163 181 > 153 12 181 > 56 24 292 > 181 15
128 Fenamidone 21.879 238 > 103 27 268 > 180 24 238 > 91 28
129 Fenamiphos 16.42 303 > 288 10 303 > 260 15 303 > 195 10
130 Fenarimol 23.564 139 > 111 15 139 > 75 30 107 > 79 9
131 Fenazaquin 21.934 145 > 117 12 160 > 145 9 145 > 91 30
132 Fenbuconazole 25.872 198 > 129 9 129 > 102 15 129 > 78 18
133 Fenchlorphos 12.616 285 > 270 15 125 > 79 6 285 > 93 27
134 Fenclorim 9.332 224 > 189 15 224 > 104 35 189 > 104 20
135 Fenfuram 10.89 201 > 109 25 109 > 53 20 N.D.
136 Fenitrothion 13.034 125 > 79 9 277 > 109 21 260 > 125 12
137 Fenobucarb 8.042 121 > 77 21 150 > 121 9 121 > 103 15
138 Fenothiocarb 15.856 161 > 72 10 161 > 55 16 N.D.
139 Fenoxanil 17.851 189 > 125 15 189 > 154 12 189 > 109 33
140 Fenoxycarb 21.409 255 > 186 10 186 > 158 5 186 > 109 12
141 Fenpropathrin 21.769 97 > 55 9 181 > 152 24 265 > 210 12
142 Fenson 14.086 141 > 77 9 141 > 51 30 99 > 73 12
143 Fenthion 13.666 278 > 109 21 278 > 169 15 278 > 125 21
144 Fenvalerate-1 28.316 167 > 125 15 225 > 119 18 225 > 147 9
Fenvalerate-2 28.709 167 > 125 15 225 > 119 18 225 > 147 9
145 Fipronil 15.17 367 > 213 27 351 > 255 18 367 > 254 21
146 Flamprop-isopropyl 18.329 105 > 77 15 105 > 51 27 276 > 105 12
147 Flonicamid 7.892 174 > 146 15 174 > 126 25 N.D.
148 Fluazifop_butyl 17.819 282 > 238 20 282 > 91 20 N.D.
149 Fluchloralin 10.797 306 > 264 9 326 > 63 12 306 > 160 27
150 Flucythrinate_1 27.017 199 > 157 10 199 > 107 35 157 > 107 20
Flucythrinate_2 27.395 199 > 157 10 199 > 107 35 157 > 107 20
151 Fludioxonil 16.81 248 > 182 15 248 > 154 15 248 > 127 35
152 Flufenpyr_ethyl 18.185 408 > 345 15 373 > 345 10 321 > 286 15
153 Flumetralin 16.212 143 > 107 27 143 > 108 21 157 > 129 15
154 Flumiclorac_pentyl 30.025 318 > 260 15 318 > 107 35 308 > 280 10
155 Flumioxazine 28.346 354 > 326 10 354 > 176 15 287 > 259 15
156 Fluopyram 15.15 173 > 145 18 173 > 95 30 145 > 95 12
157 Fluorodifen 16.536 190 > 146 6 190 > 126 9 190 > 75 21
158 Flurochloridone 14.113 311 > 174 20 311 > 103 20 187 > 159 15
159 Flusilazole 17.272 233 > 165 18 233 > 152 18 233 > 91 21
160 Flutamone 22.537 333 > 120 15 199 > 157 20 N.D.
161 Fluthiacet_methyl 31.849 405 > 56 15 403 > 84 10 403 > 56 15
162 Flutianil 27.765 231 > 216 5 231 > 200 15 200 > 199 10
163 Flutolanil 16.576 173 > 145 15 281 > 173 9 173 > 95 30
164 Flutriafol 16.248 123 > 95 15 123 > 75 27 219 > 123 15
165 Fluvalinate-1 28.736 250 > 55 15 250 > 200 15 252 > 55 20
Fluvalinate-2 28.861 250 > 55 15 250 > 200 15 252 > 55 20
166 Folpet 15.293 104 > 76 15 260 > 130 18 262 > 130 18
167 Fonofos 10.481 137 > 109 9 109 > 81 9 109 > 65 12
168 Formothion 11.474 224 > 196 10 224 > 125 15 125 > 79 15
169 Fosthiazate-1 14.287 195 > 103 9 195 > 60 30 139 > 75 14
Fosthiazate-2 14.374 195 > 103 9 195 > 60 30 139 > 75 14
170 Fthalide 14.202 272 > 243 20 272 > 215 40 243 > 215 20
171 Furathiocarb 22.528 163 > 107 15 163 > 135 6 194 > 161 12
172 Halfenprox 26.656 263 > 115 24 263 > 117 12 263 > 129 39
173 Heptachlor 12.394 100 > 65 15 272 > 237 12 274 > 239 16
174 Heptachlor-epoxide 14.807 353 > 263 14 353 > 282 12 353 > 317 10
175 Heptenophos 7.686 124 > 89 15 124 > 63 30 89 > 63 21
176 Hexachlorbenzene 9.57 284 > 249 24 284 > 214 27 249 > 214 15
177 Hexaconazole 16.503 83 > 82 9 214 > 159 18 214 > 152 30
178 Imazalil 16.643 215 > 173 9 173 > 109 30 N.D.
179 Indanofan 21.915 174 > 159 9 159 > 103 15 159 > 77 30
180 Indoxacarb 29.706 203 > 134 12 203 > 106 21 264 > 176 14
181 Iprobenfos 11.345 204 > 91 9 91 > 65 21 204 > 121 33
182 Iprodione 21.068 187 > 124 24 314 > 56 24 314 > 245 15
183 Iprovalicarb-1 17.096 134 > 42 20 119 > 91 15 116 > 98 5
Iprovalicarb-2 17.445 134 > 42 20 119 > 91 15 116 > 98 5
184 Isazofos 11.107 161 > 119 9 119 > 76 24 161 > 146 9
185 Isofenphos 15.139 213 > 121 18 213 > 185 6 213 > 65 33
186 Isofenphos-methyl 14.62 199 > 121 15 121 > 65 18 199 > 93 27
187 Isopropalin 14.56 280 > 238 9 280 > 165 21 280 > 180 12
188 Isoprothiolane 16.705 162 > 134 9 162 > 85 21 118 > 90 15
189 Isotianil 19.626 180 > 91 15 297 > 180 20 297 > 262 5
190 Isoxadifen-ethyl 19.112 222 > 204 20 222 > 178 20 204 > 176 20
191 Isoxanthion 17.581 177 > 130 12 177 > 116 12 N.D.
192 Kresoxim-methyl 17.453 116 > 89 15 206 > 131 15 206 > 116 6
193 Lactofen 23.617 223 > 132 24 344 > 223 27 344 > 179 30
194 Leptophos 22.716 377 > 362 24 377 > 269 36 375 > 360 24
195 Malathion 13.398 127 > 99 9 173 > 99 15 173 > 127 6
196 Mecarbam 15.188 97 > 65 18 131 > 74 18 131 > 86 15
197 Mefenacet 23.003 192 > 136 20 192 > 109 30 N.D.
198 Mefenpyr-diethyl 20.909 253 > 189 21 253 > 190 12 299 > 253 24
199 Mepronil 18.782 119 > 91 15 119 > 65 35 N.D.
200 Metazachlor 14.749 209 > 133 10 277 > 133 10 277 > 209 10
201 Metconazole 21.914 125 > 89 27 125 > 63 27 138 > 69 12
202 Methidathion 15.66 145 > 85 18 145 > 58 21 125 > 79 9
203 Methoprotryne 17.303 256 > 212 15 256 > 170 27 256 > 158 21
204 Methoxychlor 21.644 227 > 169 30 227 > 141 36 227 > 212 14
205 Methyltrithion 17.888 125 > 79 15 157 > 121 27 157 > 75 36
206 Metolachlor 13.582 162 > 133 15 238 > 162 15 162 > 132 24
207 Metrafenone 24.211 393 > 362 24 377 > 347 30 377 > 362 12
208 Metribuzin 11.909 198 > 82 18 198 > 89 15 198 > 110 10
209 MGK-264_1 14.251 164 > 93 15 164 > 98 18 164 > 80 30
MGK-264_2 14.632 164 > 98 15 164 > 67 9 164 > 80 27
210 Mirex 22.904 272 > 237 15 272 > 143 40 272 > 119 40
211 Molinate 7.283 126 > 55 15 187 > 126 6 N.D.
212 Monolinuron 9.947 214 > 61 10 126 > 99 10 N.D.
213 Myclobutanil 17.147 179 > 125 15 179 > 90 30 150 > 123 18
214 Napropamide 16.451 128 > 72 6 100 > 72 6 128 > 100 12
215 Nitrapyrin 6.44 194 > 133 18 194 > 112 30 194 > 158 24
216 Nitrothal-isopropyl 14.015 236 > 194 9 236 > 148 18 254 > 212 10
217 Nonachlor_cis 18.419 409 > 300 30 409 > 109 24 409 > 302 27
218 Nonachlor_trans 16.287 409 > 300 21 409 > 263 30 407 > 300 24
219 Norflurazon 19.496 303 > 145 20 303 > 173 15 303 > 102 30
220 Nuarimol 20.076 139 > 111 15 235 > 139 18 139 > 75 27
221 Ofurace 19.132 232 > 158 18 132 > 117 15 232 > 186 12
222 Oxadiazon 17.077 258 > 175 10 258 > 147 15 258 > 112 35
223 Oxadixyl 18.471 163 > 132 9 132 > 117 18 163 > 117 27
224 Oxyflofen 17.273 361 > 317 5 361 > 300 5 N.D.
225 Paclobutrazole 15.823 236 > 125 12 125 > 89 27 236 > 103 24
226 Parathion-ethyl 13.76 291 > 109 21 139 > 109 6 291 > 81 24
227 Parathion-methyl 12.149 263 > 109 18 263 > 137 15 263 > 246 6
228 Pebulate 6.428 128 > 57 9 128 > 72 6 161 > 128 6
229 Penconazole 14.84 159 > 123 18 248 > 157 24 159 > 89 30
230 Pendimethalin 14.812 252 > 162 12 252 > 161 21 162 > 147 9
231 Penflufen 18.919 274 > 141 15 141 > 84 20 141 > 60 20
232 Pentachlorobezonitrile 10.449 275 > 240 10 275 > 205 35 N.D.
233 Penthiopyrad 18.517 177 > 101 20 177 > 149 25 177 > 75 25
234 Pentoxazon 22.677 285 > 70 15 287 > 70 10 187 > 131 10
235 Permethrin-1 24.821 183 > 153 18 183 > 168 12 183 > 165 14
Permethrin-2 25.071 183 > 153 18 183 > 168 12 183 > 165 14
236 Perthane 17.768 223 > 193 40 223 > 179 30 223 > 165 30
237 Phenothrin 22.481 123 > 81 5 183 > 115 40 183 > 168 15
238 Phenthoate 15.234 274 > 121 15 274 > 125 18 274 > 246 9
239 Phorate 9.194 260 > 75 10 231 > 129 25 121 > 65 10
240 Phosalone 22.638 182 > 111 18 182 > 75 30 121 > 65 12
241 Phosmet(PMP) 21.257 160 > 77 24 160 > 133 15 160 > 105 18
242 Phosphamidone 11.869 127 > 109 0 127 > 95 0 264 > 127 0
243 Picolinafen 21.521 376 > 238 30 238 > 145 18 376 > 239 6
244 Picoxystrobin 16.495 145 > 102 24 145 > 115 15 335 > 173 12
245 Piperonyl butoxide 20.486 176 > 131 15 176 > 145 15 176 > 117 25
246 Piperophos 21.614 320 > 122 12 140 > 98 15 140 > 81 18
247 Pirimiphos-ethyl 14.502 318 > 166 18 318 > 182 15 333 > 168 21
248 Pirimiphos-methyl 13.11 290 > 125 21 290 > 233 12 290 > 151 21
249 Pretilachlor 16.887 238 > 162 15 238 > 146 15 162 > 147 10
250 Primicarb 11.492 238 > 166 10 166 > 96 10 166 > 71 30
251 Probenazole 10.227 159 > 130 10 130 > 103 18 130 > 77 30
252 Prochloraz 25.306 180 > 138 12 180 > 69 18 308 > 70 18
253 Procymidone 15.406 96 > 67 9 96 > 53 18 283 > 96 9
254 Profenofos 16.761 339 > 269 18 208 > 99 21 339 > 188 30
255 Profluralin 10.415 318 > 199 15 318 > 55 18 330 > 69 21
256 Prometon 9.776 210 > 168 9 168 > 126 9 210 > 112 15
257 Prometryn 12.526 241 > 226 15 241 > 199 10 241 > 184 15
258 Pronamide 10.435 173 > 145 15 173 > 109 27 145 > 109 15
259 Propachlor 8.133 120 > 77 21 176 > 57 9 120 > 51 27
260 Propanil 11.803 217 > 161 15 161 > 126 15 161 > 99 35
261 Propazine 10.039 214 > 172 12 172 > 69 21 172 > 94 15
262 Propetamphos 10.353 138 > 110 9 138 > 64 18 194 > 166 9
263 Propham 6.374 119 > 91 12 119 > 64 24 91 > 64 12
264 Propiconazole-1 19.485 259 > 191 10 259 > 173 20 259 > 69 30
Propiconazole-2 19.706 259 > 191 10 259 > 173 20 259 > 69 30
265 Propisochlor 12.533 162 > 120 15 132 > 117 12 162 > 91 30
266 Prothiophos 16.66 267 > 239 9 309 > 239 15 267 > 205 30
267 Pyracabolid 14.215 125 > 107 5 125 > 97 10 125 > 55 15
268 Pyraclofos 24.093 194 > 138 21 194 > 139 15 360 > 194 12
269 Pyrazophos 23.888 221 > 193 9 232 > 204 9 221 > 177 21
270 Pyridaben 25.015 147 > 117 21 147 > 132 15 147 > 119 10
271 Pyridalyl 27.252 204 > 176 10 204 > 148 20 204 > 146 30
272 Pyridaphenthion 21.221 340 > 199 15 340 > 109 20 199 > 92 10
273 Pyrifenox 1 14.947 171 > 100 24 171 > 136 12 262 > 91 24
Pyrifenox 2 15.828 171 > 100 27 171 > 136 12 262 > 91 21
274 Pyrimidifen 27.977 184 > 169 15 184 > 157 15 186 > 171 20
275 Pyriminobac-methyl(E) 19.936 302 > 256 21 302 > 230 18 330 > 254 10
276 Quinalphos 15.209 146 > 118 9 146 > 91 27 157 > 129 15
277 Quinoxyfen 19.373 237 > 208 27 272 > 237 18 237 > 181 39
278 Quintozene 10.393 295 > 237 16 265 > 237 10 295 > 265 12
279 Sectumeton 10.886 169 > 154 9 196 > 85 9 196 > 57 27
280 Silafluofen 27.439 286 > 258 10 286 > 179 10 286 > 165 25
281 Simeconazole 12.259 121 > 101 15 121 > 75 24 195 > 75 18
282 Simetryn 12.244 213 > 198 5 213 > 185 10 213 > 170 10
283 Spiromesifen 21.038 272 > 209 20 272 > 254 15 N.D.
284 Spiroxamine 2 12.103 100 > 72 9 100 > 58 12 100 > 99 14
284 Spiroxamine_1 12.972 100 > 72 9 100 > 58 12 100 > 99 14
285 Sulfotep 9.042 238 > 146 15 322 > 146 27 322 > 202 9
286 Sulprofos 18.918 156 > 141 18 322 > 156 12 322 > 139 15
287 TCMTB 16.255 180 > 136 15 238 > 180 5 180 > 109 30
288 Tebuconazole 20.057 125 > 89 18 250 > 125 24 125 > 90 24
289 Tebufenpyrad 21.873 333 > 171 18 171 > 88 21 333 > 276 9
290 Tebupirimfos 11.317 261 > 137 15 234 > 110 12 234 > 126 12
291 Tefluthrin 11.026 177 > 127 18 197 > 141 12 177 > 137 16
292 Terbacil 10.869 161 > 144 15 161 > 88 24 N.D.
293 Terbufos 10.375 231 > 129 27 231 > 175 12 231 > 203 9
294 Terbumeton 10.081 169 > 154 9 169 > 112 15 169 > 69 30
295 Terbuthylazine 10.336 214 > 71 15 214 > 104 21 214 > 132 15
296 Terbutryn 12.938 241 > 170 15 226 > 136 15 226 > 96 15
297 Tetrachlorvinphos 16.033 329 > 109 21 109 > 79 9 331 > 109 21
298 Tetraconazole 14.023 336 > 156 27 336 > 204 33 336 > 183 24
299 Tetradifon 22.284 111 > 75 15 159 > 131 12 159 > 111 21
300 Tetramethrin-1 21.301 164 > 107 15 164 > 77 27 123 > 81 9
Tetramethrin-2 21.548 164 > 107 12 164 > 77 27 123 > 81 9
301 Tetrasul 18.685 324 > 254 18 324 > 252 33 252 > 182 30
302 Thiazopyr 13.689 327 > 277 27 327 > 292 21 327 > 252 36
303 Thifluzamide 17.427 166 > 125 15 449 > 429 21 447 > 427 21
304 Thiometon 9.48 125 > 47 14 125 > 79 10 125 > 63 8
305 Thionazin 8.033 143 > 79 10 143 > 52 35 N.D.
306 Tolclofos_methyl 12.305 265 > 250 15 265 > 93 27 265 > 220 21
307 Tolfenpyrad 30.404 383 > 171 30 383 > 181 5 385 > 173 35
308 Tolylfluanid 14.99 137 > 91 18 238 > 137 12 137 > 65 30
309 Tralomethrin-1 29.326 181 > 152 27 253 > 93 21 253 > 174 9
Tralomethrin-2 29.718 181 > 152 27 253 > 93 21 253 > 174 9
310 Triadimefon 13.834 208 > 181 12 208 > 127 15 208 > 111 24
311 Triadimenol 15.209 168 > 70 12 112 > 58 9 128 > 65 22
312 Triallate 11.119 268 > 226 15 268 > 184 30 143 > 83 15
313 Triazophos 18.978 161 > 134 9 161 > 106 15 257 > 162 9
314 Tribufos 16.89 169 > 57 9 202 > 147 9 202 > 113 21
315 Tridiphane 12.588 187 > 159 20 187 > 123 35 173 > 145 20
316 Triflumizole 15.541 206 > 179 18 278 > 73 6 206 > 144 24
317 Triflumuron 6.4 139 > 111 18 139 > 75 27 N.D.
318 Trifluralin 8.866 306 > 264 9 264 > 160 18 264 > 206 9
319 Uniconazole 16.852 234 > 165 9 234 > 102 30 234 > 137 24
320 Vernlolate 6.296 128 > 86 6 161 > 160 12 161 > 128 9
321 Vinclozoline 12.141 198 > 145 18 212 > 172 15 198 > 109 27
322 Zoxamide 15.344 187 > 159 15 187 > 123 27 242 > 186 21

RT: Retention Time; N.D.: Not Detected; CE: Collision Energy.

Figure 3.

Figure 3

Procedure of multiple reaction monitoring (MRM). A, B, and C are representing qualitative ion 2, qualitative ion 1, and quantitative ion, respectively.

From the full scan spectrum, a representative ion was selected as the precursor ion based on the molecular structure and unique mass fragments of each pesticide compound. The precursor ions that passed through the first quadrupole analyzer were reionized at 5–50 eV in the collision cell, and the resulting product ions passed through the second quadrupole analyzer to obtain the ion chromatogram of the individual mass fragments (Figure 3). At least two product ions were selected for each pesticide compound by comparing and considering the peak shapes and sensitivities, and then selecting suitable ion signals and collision energies. The confirmation criteria for the pesticide compounds were as follows: two or more product ions had to be detected and the height ratio of each ion had to match that in the reference spectrum. For quantification, the chromatographic area ratio of the product ions was compared to that in the standard.

In quadrupole MS analyses, several ions can simultaneously reach the detector within a short time to produce ambiguous peak shapes, resulting in reduced sensitivity. To prevent this problem, the dwell time of the MRM ions was set within a range of 0.15–0.29 s and the scan speed was set to 0.2–0.82 s/scan.

2.4. Sample Preparation and Extraction

Figure 4 shows a sample preparation process. After homogenizing the samples using a large-volume grinder, 10 g of chili pepper and potato samples and 5 g of low-water-content coffee and corn samples (purchased from local supermarkets) were accurately weighed. The low-water-content samples were mixed with 10 mL of distilled water and the mixtures were left to stand for 30 min for moistening before extraction. For pretreatment, the EN15662 QuEChERS method, including pH control, was applied [32]. The prepared sample was placed in a 50 mL polypropylene centrifuge tube to which 10 mL of ACN was added as an organic solvent. The sample underwent vigorous vortex mixing for 1 min to ensure that the solvent and the sample were adequately mixed. The EN kit (MgSO4, 4 g; NaCl, 1 g; sodium hydrogen citrate sesquihydrate, 0.5 g; and sodium citrate dihydrate, 1 g) was added to the tube and after 1 min of vigorous shaking, the mixture was centrifuged for 10 min (4000× g at 4 °C). During this process, the water and organic solvent (ACN) layers clearly separated and the pesticide compounds remaining in the sample were mostly transferred to the organic solvent layer. The pesticides and the water in the sample mixed with the ACN, and the powerful dehydration capabilities of the MgSO4 and NaCl forcefully separated the water from the organic solvent. The centrifugation process considerably reduced the time required to separate the water and organic solvent layers.

Figure 4.

Figure 4

Schematic diagram of sample preparation.

To a 2 mL centrifuge tube containing 150 mg of MgSO4 and 25 mg of a primary secondary amine (PSA) sorbent, 1 mL of the supernatant obtained in the extraction process was added and the lid was closed for 1 min of vigorous shaking. Next, the mixture was centrifuged for 15 min (4000× g at 4 °C) to ensure the adequate separation of the layers. The supernatant was passed through a membrane filter (PTFE, 0.2 μm), and the final extract was transferred to a brown vial for analysis [32].

2.5. Method Validation

The method for the simultaneous analysis of 322 pesticides was validated according to the CODEX guidelines for pesticide residue analysis (CAC/GL40) and the Guideline of Standard Procedures of Test Methods for Foods and Other Substances (April, 2016) published by the Ministry of Food and Drug Safety (MFDS, Republic of Korea) [33]. The method developed in this study was validated for linearity, LOQ, recovery, and reproducibility.

The linearity was determined via serial dilution of a working standard solution containing a mixture of the 322 pesticides to 5, 10, 50, 100, and 200 ng mL−1 to obtain a calibration curve for each compound. The LOQ was determined by diluting the working standard solution with purified extracts of the coffee, potato, corn, and chili pepper samples, which were selected as representative agricultural products for the validation. On the resulting chromatograms, the concentration of the standard solution with a signal-to-noise ratio (S/N) of 10 was determined and verified [34]. For the recovery and reproducibility, the coffee, potato, corn, and chili pepper samples were spiked with various concentrations of the working standard solution (0.005, 0.01, 0.05, 0.1, and 0.2 mg/L) and left to stand for 30 min to allow the pesticide compounds to adequately mix with the sample. The spiked samples were then extracted and analyzed using the method developed in this study. The percentage recovery (%) was determined by comparing the experimentally determined concentration with the added amount of pesticide. To verify the reproducibility, the relative standard deviation (RSD) of the recoveries was calculated from five repeated measurements per concentration.

Matrix Effects (ME) are defined by the CODEX as influences on the measured concentration or the amount of the target analyte due to other components within the sample. The extent of the ME, determined by contrasting the response of the analyte in a pure standard solution with its response in a sample extract, can differ significantly (Figure S1). The ME is evaluated by comparing the slope of the calibration curves for the standards in the solvents against the standards prepared in the ME. The ME is calculated using Equation (1): [35].

Matrix effects ME=Slope of calibration curve in matrixSlope of calibration curve in solvent1×100% (1)

If the ME exhibits a suppression or enhancement of 0–20%, it is referred to as a Soft Matrix Effect, which is generally negligible and does not significantly impact the analysis. However, if the suppression or enhancement is between 20 and 50%, the ME is considered Medium, which may influence the analysis. In cases where the suppression or enhancement exceeds 50%, the ME is classified as Strong [36]. In such instances, it is necessary to implement measures to mitigate the ME’s impact on the analysis. One recommended approach is to use matrix-matched calibration, which involves the preparation of calibration standards in untreated or non-detect samples following the same pretreatment process. This helps in reducing the analytical error due to the ME when the sample extract and matrix-matched standard are injected into the instrument for analysis. Another potential approach to tackle a Strong ME could be sample dilution. The ME % values are presented in Tables S2–S5.

2.6. Monitoring Using the Multiresidue Method for Pesticide Residue Analysis

The field applicability of the MRMs developed in this study was verified by determining the current state of pesticide residues in selected agricultural products distributed in the Republic of Korea. Samples were collected from three cities in the Republic of Korea: Busan, Ulsan, and Gimhae. The agricultural products selected for the monitoring were those commonly available at markets and frequently consumed by Koreans [24]. A total of 135 samples were purchased and tested. To collect accurate data and assess the pesticide exposure of the national population from the consumption of agricultural products, the selected samples were agricultural products from the final stage before consumption, such as those available at major supermarkets or wholesale markets, rather than those from the production stage, because the goal was to examine agricultural products right after purchase and before consumption. Table 3 presents the type and number of the sampled agricultural products.

Table 3.

Collected samples.

Agricultural Product Number of Samples
Chili pepper 21
Carrot 17
Stem of garlic 7
Mango 10
Wheat 14
Banana 24
Almond 10
Cabbage 10
Coffee bean 12
Pineapple 10

Based on the type of agricultural product, 1 kg of fresh product or 0.3 kg of dried product was purchased to ensure that a representative amount of each sample was collected, as per the Korean Food Code requirements [24]. The collected samples were immediately transferred to the laboratory and the entire amount was homogenized in a large-volume grinder and pretreated according to the method developed in this study. Excess samples remaining after the experiments were divided among the sealed containers and stored in a freezer (−18 °C) to prevent the partial degradation of the pesticides by light or temperature in case reanalysis was required.

3. Results and Discussion

3.1. Analytical Method Validation

3.1.1. Linearity

To determine the linearity of the 322 pesticide compounds, the working standard solutions were prepared at five concentrations (0.005, 0.01, 0.05, 0.1, and 0.2 mg/L) in the LOQ range of 0.005–0.2 mg/L and injected into the device for analysis. The coefficient of determination (R2) was ≥0.98 in all cases, indicating a high level of linearity and confirming that the method was suitable for quantitative analyses. Table S6 presents the correlation coefficients for the four agricultural products.

3.1.2. Recovery

To determine the recovery, the analysis was repeated five times at each spiking level for each target sample. The number of pesticides within the mean recovery range of 60–120% was 349 out of 359 for coffee, 348 for potato, 339 for corn, and 346 for chili pepper. The standard deviation (SD) of the repeated recovery tests was mostly within 30%, which satisfied the CODEX requirement for pesticide residue analysis (Table 4 and Figures S3–S6). The primary aim of this study was the development of a high-throughput screening tool capable of rapidly detecting a broad spectrum of pesticides. Achieving an RSD of 15% or less is indeed desirable, yet not consistently feasible given the intrinsic variability of the matrices and the multitude of target compounds. Despite certain constraints, this methodology, with its capacity for swift screening of a wide array of pesticides across diverse commodities, carries significant practical implications. Thus, it needs refinement and optimization with a specific focus on commodities such as coffee and chili pepper in subsequent research endeavors.

Table 4.

Average recovery (Ave., %) and SD (%) for the GC-MS/MS method applied to the studied samples (n = 5) at spiked level (0.01 mg/kg).

Coffee Potato Maize Chili Pepper
Compound Ave.
(%)
SD Ave.
(%)
SD Ave.
(%)
SD Ave.
(%)
SD
2,6-Diisoporpylnaphthalene 69.1 8.6 72.4 2.4 65.3 2.0 74.5 1.7
Acetochlor 75.9 5.1 74.3 4.8 76.6 3.0 79.9 1.6
Acibenzola_s_methyl 92.4 12.3 66.4 1.6 73.8 1.7 83.7 11.9
Acrinathrin_1 86.5 3.8 77.6 4.0 73.0 5.1 95.7 4.1
Acrinathrin_2 81.5 3.7 77.2 8.1 76.1 7.8 102.3 8.1
Alachlor 79.2 5.8 73.7 2.1 76.0 3.0 84.9 0.5
Aldrin 65.2 7.6 63.8 1.0 54.9 1.8 76.7 4.0
Allethrin-1 60.5 16.6 86.1 5.9 78.0 1.1 65.6 10.8
Allethrin-2 83.8 10.0 77.3 5.4 72.8 4.1 75.3 9.5
Allidochlor 72.3 4.2 61.2 5.0 61.4 1.4 70.1 6.6
Ametryn 78.8 9.7 72.4 3.7 70.9 2.3 84.8 4.8
Anilofos 76.2 5.9 70.7 3.2 74.2 2.7 103.6 10.1
Aramit-1 92.7 3.0 89.1 9.3 66.5 3.4 84.2 5.2
Aramit-2 66.4 1.4 73.9 2.4 77.1 0.9 102.8 7.4
Aspon 77.7 8.4 73.1 2.6 73.2 2.5 87.7 6.9
Atrazine 73.5 8.7 69.7 2.3 70.6 1.6 70.9 7.0
Azaconazole 76.5 9.2 70.7 2.1 68.3 3.4 79.3 2.9
Azinphos-ethyl 75.6 4.7 72.6 4.8 74.5 6.3 104.5 9.3
Azinphos-methyl 93.5 3.4 67.8 6.4 70.5 3.9 97.6 11.8
Benalaxyl 82.6 7.8 77.4 1.7 74.5 3.0 84.8 4.7
Benodanil 84.7 9.6 72.7 3.4 71.2 5.0 98.9 4.9
Benoxacor 125.6 56.0 70.7 2.3 73.9 2.2 84.5 3.4
Benzoylprop_ethyl 82.9 6.5 76.9 2.2 75.0 1.7 85.1 4.7
BHC_alpha 69.5 5.6 67.7 2.5 66.6 2.5 79.3 4.6
BHC_beta 71.6 6.0 70.1 1.3 68.4 2.1 81.1 2.0
BHC_delta 69.8 6.2 70.2 2.7 68.8 2.7 80.6 5.5
BHC_gamma 71.9 4.9 67.9 2.0 66.6 2.5 75.7 1.6
Bifenox 86.6 3.6 61.5 3.6 70.1 4.6 104.0 8.7
Bifenthrin 77.5 8.6 76.5 2.5 68.4 1.7 88.0 4.6
Bromacil 74.4 11.3 75.1 1.7 77.1 2.5 82.4 1.1
Bromobutide 81.5 6.9 72.8 2.9 73.5 3.7 81.1 4.4
Bromophos-ethyl 74.7 9.4 70.6 3.0 68.5 2.2 83.8 8.5
Bromophos-methyl 76.4 7.4 71.6 4.5 71.2 2.8 84.6 1.2
Bromopropylate 80.1 7.4 76.7 4.0 72.6 1.7 89.9 6.7
Bupirimate 81.7 5.6 71.6 3.6 75.9 3.8 90.1 5.2
Butachlor 83.9 10.6 77.0 1.3 74.2 5.5 90.2 1.9
Butafenacil 82.5 4.8 76.9 5.4 70.7 2.2 99.6 8.0
Butralin 84.2 7.4 71.4 2.4 74.5 4.4 79.2 2.6
Butylate 69.0 5.3 58.6 1.4 60.7 1.7 61.7 2.0
Cadusafos 77.7 4.0 72.0 3.6 73.2 2.7 82.8 3.0
Captan 79.8 3.2 78.1 7.4 72.9 1.4 55.1 39.0
Carbophenothion 78.5 11.6 71.6 3.0 67.3 3.5 91.7 4.2
Chinomethionat 71.3 7.6 68.7 2.5 65.5 3.2 64.6 6.6
Chlorbenside 70.2 11.4 64.5 5.2 59.6 4.4 97.2 7.3
Chlorbufam 69.0 8.3 71.9 4.3 74.4 0.8 86.7 2.2
Chlordane_1 73.5 11.1 71.7 1.5 62.3 1.1 79.3 5.3
Chlordane_2 70.1 11.4 68.0 1.2 65.8 3.0 79.2 11.9
Chlorethoxyfos 72.7 3.9 67.9 2.6 68.4 2.1 79.2 2.2
Chlorfenapyr 75.8 4.2 73.0 4.6 72.4 5.0 86.6 1.0
Chlorfenson 77.1 9.1 72.9 3.0 70.4 2.3 75.9 10.7
Chlorfluazuron 26.4 12.1 76.2 11.9 70.0 8.7 63.5 7.9
Chlorflurenol_methyl 80.4 7.3 70.6 2.6 72.4 2.7 81.8 1.4
Chlornitrofen 87.5 5.7 69.1 4.1 67.6 7.3 86.8 4.7
Chlorobenzilate 82.9 7.0 72.5 2.9 69.6 4.1 91.9 6.2
Chloroneb 72.6 6.0 67.8 2.4 66.0 1.1 75.6 3.0
Chloropropylate 80.2 8.2 71.5 3.1 70.1 3.9 88.3 4.0
Chloroxuron 65.5 4.7 70.5 3.3 67.1 3.5 84.0 3.0
Chlorpropham 74.8 7.8 76.0 1.9 74.1 1.8 78.1 6.6
Chlorpyrifos 82.2 6.3 74.8 3.4 72.5 2.8 83.7 2.1
Chlorpyrifos-methyl 76.4 6.7 71.2 1.6 73.4 1.0 82.5 1.2
Chlorthal-dimethyl 83.6 6.4 76.3 3.4 75.4 1.5 81.9 4.0
Chlorthalonil 77.2 11.4 83.1 2.2 73.9 11.4 28.0 36.4
Chlorthion 83.1 5.8 66.8 4.3 71.5 4.2 86.0 6.3
Chlorthiophos_1 74.2 9.5 72.1 2.6 72.3 2.8 87.7 4.6
Chlorthiophos_2 74.7 9.2 73.4 2.6 71.6 2.1 86.6 3.8
Chlozolinate 80.5 6.8 72.1 2.6 71.0 3.9 79.6 7.4
Cinidone_ethyl 84.0 8.3 79.3 3.9 78.3 5.5 93.8 8.5
Cinmethylin 83.2 8.3 82.3 3.4 77.0 3.4 91.5 2.4
Clomazon 79.4 8.2 72.5 3.8 72.7 1.7 77.8 2.3
Clomeporp 82.6 3.4 71.6 1.6 73.8 2.8 92.3 5.6
Coumaphos 75.1 4.8 72.9 4.1 72.8 2.8 99.6 8.0
Crotoxyphos 80.2 8.5 72.5 5.6 72.8 4.1 78.7 4.3
Cyanazine 79.4 8.9 72.8 3.1 74.2 3.0 89.2 6.9
Cyanophos 79.3 4.6 72.6 3.3 73.8 2.6 91.3 2.9
Cycloate 72.4 5.2 67.5 2.2 68.2 2.5 76.7 2.7
Cyflufenamid 82.6 8.9 76.4 3.7 75.9 5.0 88.2 1.1
Cyfluthrin-1 76.2 7.3 78.6 4.5 69.1 1.3 89.1 4.5
Cyfluthrin-2 78.5 6.5 78.2 4.3 72.2 2.0 91.4 3.8
Cyfluthrin-3 77.0 7.7 78.2 2.7 72.9 2.9 95.8 10.0
Cyfluthrin-4 80.3 6.7 77.4 4.4 69.7 2.5 96.2 2.2
Cyhalofop-butyl 79.6 5.9 77.9 2.9 75.9 1.7 88.2 4.4
Cyhalothrin-1 82.0 4.7 78.4 3.5 71.6 2.9 89.7 6.1
Cyhalothrin-2 86.3 1.7 74.5 2.5 71.6 4.0 92.7 9.7
Cypermethrin-1 79.9 7.3 80.1 4.4 66.9 2.4 92.7 6.3
Cypermethrin-2 80.4 6.9 79.4 3.9 68.7 3.8 98.2 6.7
Cypermethrin-3 82.1 2.8 79.3 4.9 67.7 2.2 91.5 7.2
Cypermethrin-4 81.6 7.1 75.9 2.7 67.6 4.2 99.5 9.6
Cyprazine 79.8 6.6 72.3 2.2 71.3 4.9 91.7 8.0
Cyproconazole-1 79.3 8.2 72.4 2.9 70.5 4.7 88.0 7.4
Cyproconazole-2 79.2 7.2 71.8 1.9 69.6 5.7 84.8 6.3
Cyprodinil 79.6 8.4 73.3 2.5 73.1 3.2 88.5 4.5
DDD_pp 72.3 7.7 67.6 2.6 65.5 2.1 82.8 2.5
DDE_pp 62.3 8.8 69.3 2.8 59.8 2.3 87.5 5.9
DDT_op 65.2 8.9 68.5 1.9 59.5 2.5 74.4 4.5
DDT_pp 66.8 8.5 70.2 1.9 61.4 1.4 83.0 3.7
Deltamethrin-1 116.4 6.4 67.6 6.1 57.4 5.2 88.0 30.7
Deltamethrin-2 80.3 6.3 77.4 4.4 72.5 3.9 95.7 7.2
Demeton_O 76.3 4.2 53.8 8.0 61.3 2.0 64.7 7.8
Demeton_S 71.9 7.7 49.8 5.4 64.2 4.7 67.0 13.5
Demeton_S_methylsulfone 23.8 20.0 6.8 4.0 4.5 3.2 0.4 0.3
Desmetryn 76.5 5.9 69.3 2.5 72.5 3.9 82.2 0.4
Diafor 78.8 1.9 75.2 5.1 75.0 4.3 104.4 8.4
Diallate-1 74.0 8.2 68.5 2.7 71.6 2.4 81.4 4.1
Diallate-2 71.7 7.3 68.9 3.8 68.4 1.5 85.0 1.1
Diazinon 74.6 7.5 74.6 1.6 72.6 3.1 79.2 2.6
Dichlofenthion 75.3 5.6 71.6 3.9 70.6 1.7 84.5 4.7
Dichlofluanid 80.5 7.5 78.6 4.1 73.1 2.9 60.8 9.3
Dichlormid 74.4 7.4 61.5 3.7 65.0 0.8 63.6 3.4
Dichlorvos 62.7 9.4 62.1 7.4 52.8 1.0 49.2 2.1
Diclobutrazole 83.7 6.4 69.8 3.2 71.0 5.5 67.9 14.5
Diclofop_methyl 79.1 8.6 78.2 2.2 77.2 1.0 85.9 4.1
Dicloran 73.0 6.0 68.8 3.2 72.5 3.6 88.0 0.5
Dicofol 73.8 8.0 71.1 2.5 67.0 2.2 91.7 2.5
Dieldrin 73.6 5.7 68.2 6.1 65.5 3.6 73.4 1.9
Diethatyl-ethyl 83.5 8.9 73.8 2.6 72.8 7.0 86.0 6.6
Diethofencarb 79.4 9.3 75.1 2.5 72.0 3.2 91.2 4.2
Difenoconazole-1 80.7 5.6 72.8 3.4 72.6 2.0 115.7 20.1
Difenoconazole-2 77.7 4.8 71.9 2.5 72.9 1.3 113.4 20.1
Diflufenican 80.7 6.6 75.9 1.7 75.0 1.6 87.5 2.4
Dimepiperate 77.6 8.3 72.0 1.9 73.2 4.0 86.0 7.3
Dimethachlor 78.2 6.3 73.8 3.2 73.8 2.8 85.1 3.0
Dimethametryn 79.5 8.9 72.3 2.9 72.4 2.0 82.0 4.3
Dimethenamid 79.6 7.4 73.2 2.7 74.9 2.1 81.9 2.9
Dimethoate 78.1 7.6 69.2 4.3 92.8 37.9 92.0 13.8
Dimethylvinphos-(E) 79.4 6.0 70.0 3.8 72.5 2.8 89.8 1.5
Dimethylvinphos-(Z) 79.6 5.6 70.7 3.7 74.4 4.3 84.3 5.7
Diniconazole 78.6 4.7 70.2 2.9 71.3 5.6 96.5 13.5
Dinitramine 79.0 6.0 66.4 2.2 72.3 2.4 83.7 9.2
Dioxathion 80.4 6.2 73.6 2.9 75.3 2.5 93.2 5.5
Diphenamid 79.8 7.7 72.8 2.8 73.6 1.6 85.4 5.6
Diphenylamine 75.8 5.9 68.4 3.1 69.8 2.1 66.4 1.4
Dithiopyr 82.0 7.8 73.9 2.0 77.2 1.9 85.6 2.8
Edifenphos 73.7 5.6 74.6 3.6 74.4 3.7 87.3 3.1
Endosulfan_alphs 213.1 26.4 69.5 2.1 66.4 7.2 95.4 2.9
Endosulfan_beta 77.7 9.3 67.0 5.3 63.5 4.1 76.9 5.1
Endosulfan_sulfate 73.2 8.7 66.2 6.6 61.3 6.1 86.1 12.3
Endrin 75.8 6.9 70.1 1.8 62.1 4.5 84.4 3.2
EPN 81.1 6.4 69.8 1.6 74.2 3.9 97.9 8.4
Epoxiconazole 79.7 6.6 70.9 2.5 71.2 3.5 99.1 7.1
EPTC 67.0 5.5 52.6 1.8 56.8 1.6 56.8 2.5
Esprocarb 77.8 9.2 71.0 3.1 70.8 2.9 81.7 3.1
Etaconazole_1 84.6 7.2 76.0 5.0 75.7 3.9 97.1 10.0
Etaconazole_2 79.1 6.3 75.8 2.4 75.5 1.4 86.1 3.7
Ethalfluralin 77.9 2.4 72.7 1.9 76.9 3.4 89.1 3.4
Ethion 82.0 7.8 71.4 2.5 72.8 6.0 82.7 4.0
Ethofumesate 87.0 9.5 70.1 2.6 73.7 4.2 94.3 3.6
Ethoprophos 77.0 6.9 70.9 3.6 73.3 3.0 85.3 5.2
Ethychlozate 83.9 11.0 72.0 4.2 68.3 4.2 77.6 7.1
Etofenprox 72.6 7.5 79.5 2.8 69.7 1.5 85.1 4.9
Etoxazole 114.2 14.7 74.9 2.6 76.5 2.0 94.5 6.6
Etridiazole 71.8 4.8 60.0 2.3 61.8 1.5 64.9 0.9
Etrimfos 75.1 8.1 73.5 3.2 75.6 1.7 87.9 2.6
Fenamidone 82.2 5.6 70.6 0.7 72.1 2.8 100.6 6.2
Fenamiphos 80.0 12.7 68.6 5.1 71.1 11.7 83.7 3.7
Fenarimol 78.8 4.6 76.0 3.7 72.4 5.0 89.2 5.8
Fenazaquin 69.3 7.1 74.3 2.6 71.8 2.3 83.4 4.1
Fenbuconazole 76.2 5.8 72.5 2.5 70.3 2.0 77.7 5.9
Fenchlorphos 75.3 5.7 71.2 2.4 70.4 0.7 81.8 4.9
Fenclorim 74.9 8.8 71.1 2.4 69.0 2.5 78.8 2.8
Fenfuram 79.8 7.2 69.5 1.8 75.0 1.8 5.6 2.3
Fenitrothion 110.3 5.5 69.1 4.5 77.7 18.6 87.2 2.7
Fenobucarb 75.9 5.9 71.1 3.3 70.9 2.2 81.5 3.2
Fenothiocarb 78.9 6.6 73.9 1.0 69.5 2.7 80.8 6.6
Fenoxanil 82.0 8.0 75.5 1.6 76.5 2.8 84.9 9.2
Fenoxycarb 57.6 9.7 70.1 1.6 71.8 12.4 53.4 2.7
Fenpropathrin 82.7 7.7 77.5 2.7 76.2 0.8 112.3 5.3
Fenson 75.5 7.2 68.8 2.7 68.7 1.2 80.6 3.7
Fenthion 80.5 7.9 67.9 2.6 72.8 2.1 83.5 6.1
Fenvalerate-1 75.1 8.1 76.6 2.9 73.7 1.1 93.4 6.6
Fenvalerate-2 83.0 8.4 77.0 4.3 68.4 3.3 99.4 8.3
Fipronil 84.1 5.2 72.3 5.5 75.7 3.1 98.3 8.7
Flamprop-isopropyl 86.1 7.1 75.8 2.9 74.2 3.3 82.1 3.9
Flonicamid 55.8 21.8 54.4 6.1 34.4 12.1 13.5 7.2
Fluazifop_butyl 81.6 9.2 73.2 2.9 73.7 2.6 68.3 14.8
Fluchloralin 77.8 3.7 65.6 3.9 74.3 5.7 89.7 2.8
Flucythrinate_1 80.9 5.6 77.1 3.8 71.3 2.4 102.7 7.1
Flucythrinate_2 81.6 5.0 76.1 3.4 74.8 1.3 101.5 7.2
Fludioxonil 83.4 11.0 71.3 4.6 72.7 2.2 113.7 7.0
Flufenpyr_ethyl 77.9 8.8 75.4 3.6 72.5 5.6 92.5 9.3
Flumetralin 86.9 6.4 74.5 2.5 70.9 9.3 73.3 10.1
Flumiclorac_pentyl 77.9 8.8 78.9 3.9 78.3 2.1 100.4 10.4
Flumioxazine 87.9 5.1 71.6 2.0 75.9 3.4 113.4 7.1
Fluopyram 82.1 10.0 75.0 3.7 74.6 2.9 89.1 8.7
Fluorodifen 84.2 8.7 62.0 2.2 71.8 9.2 80.3 2.6
Flurochloridone 80.7 8.8 68.9 3.0 69.6 3.3 95.1 4.2
Flusilazole 79.6 7.8 68.0 4.9 73.0 4.4 118.9 5.1
Flutamone 82.6 4.8 76.2 3.5 73.9 3.4 97.4 7.0
Fluthiacet_methyl 87.2 10.2 83.5 1.3 83.9 6.7 101.0 10.1
Flutianil 86.1 1.6 75.8 2.7 74.7 1.2 95.2 5.0
Flutolanil 78.6 9.1 74.4 3.7 69.6 1.2 11.7 1.7
Flutriafol 88.9 17.3 69.4 2.6 68.0 10.9 79.9 4.0
Fluvalinate-1 80.1 7.0 78.6 4.8 73.9 2.3 104.8 10.5
Fluvalinate-2 82.7 6.2 79.0 3.8 72.7 2.5 104.0 11.0
Folpet 79.8 8.5 74.1 2.8 74.1 2.6 66.5 1.1
Fonofos 76.1 6.8 70.9 3.7 72.5 1.9 83.8 4.5
Formothion 76.4 12.9 62.3 2.8 69.3 7.8 78.6 9.5
Fosthiazate-1 80.5 7.4 67.7 6.8 70.3 5.0 94.5 5.3
Fosthiazate-2 76.1 9.6 69.6 6.5 71.0 3.5 90.6 7.3
Fthalide 77.8 7.6 71.0 2.7 70.2 2.3 78.6 2.2
Furathiocarb 81.9 3.3 75.5 3.8 71.4 2.7 97.1 10.3
Halfenprox 76.0 7.4 76.1 4.4 60.6 5.7 90.8 4.6
Heptachlor 67.6 5.5 67.8 3.1 61.9 1.4 78.2 2.8
Heptachlor-epoxide 64.4 8.6 69.9 3.1 65.8 1.9 78.2 11.6
Heptenophos 76.4 6.0 72.9 3.2 72.6 2.3 77.7 2.8
Hexachlorbenzene 62.8 10.7 67.9 1.6 57.3 2.8 71.4 5.7
Hexaconazole 74.1 5.8 72.0 3.5 72.9 5.9 78.4 4.4
Imazalil 32.6 28.4 66.7 1.6 56.3 7.9 83.2 3.3
Indanofan 80.1 6.6 72.4 4.9 71.5 3.9 83.3 5.4
Indoxacarb 82.6 2.8 80.4 2.9 76.8 0.3 77.9 3.0
Iprobenfos 79.5 4.1 70.5 3.3 75.4 3.1 94.7 8.4
Iprodione 77.5 8.8 77.5 3.7 75.7 4.4 84.0 4.5
Iprovalicarb-1 80.7 8.0 74.6 3.4 71.2 5.0 82.5 5.4
Iprovalicarb-2 79.9 9.6 72.1 3.4 72.4 6.3 83.9 4.8
Isazofos 80.2 6.7 72.6 2.2 74.4 2.0 86.8 4.2
Isofenphos 82.3 6.7 72.8 3.5 74.7 2.0 86.6 4.9
Isofenphos-methyl 82.1 7.0 72.0 3.4 73.1 3.6 91.1 6.6
Isopropalin 79.1 6.4 69.8 3.2 72.9 5.0 83.0 5.5
Isoprothiolane 81.5 6.1 73.2 2.5 73.0 2.2 83.4 4.3
Isotianil 86.4 8.5 76.3 1.8 72.4 2.1 89.3 3.9
Isoxadifen-ethyl 82.4 7.8 70.8 2.7 74.2 4.2 87.4 8.1
Isoxanthion 83.9 9.5 67.0 3.1 75.3 8.9 85.3 2.3
Kresoxim-methyl 83.3 9.1 74.1 2.5 73.3 2.7 91.4 7.6
Lactofen 85.3 2.2 74.7 2.7 74.3 8.7 115.5 15.8
Leptophos 67.9 9.1 73.4 2.6 66.6 1.7 86.3 5.6
Malathion 82.0 11.3 72.5 4.2 74.8 4.7 85.6 2.3
Mecarbam 84.3 6.0 69.9 2.3 68.5 2.5 89.2 4.5
Mefenacet 77.1 7.5 75.7 3.2 73.8 2.7 91.6 4.6
Mefenpyr-diethyl 82.0 6.1 73.9 3.5 75.3 1.7 90.6 5.5
Mepronil 82.0 10.0 74.1 2.6 73.0 4.0 81.0 5.3
Metazachlor 84.6 8.0 73.2 2.9 74.7 1.7 83.3 6.9
Metconazole 78.7 5.3 73.9 1.9 73.4 2.9 95.0 9.0
Methidathion 80.6 7.5 71.0 3.3 75.9 3.7 90.7 3.8
Methoprotryne 80.4 9.4 71.2 2.9 71.8 3.9 69.8 5.7
Methoxychlor 71.9 7.6 68.1 2.3 68.7 1.6 88.1 6.1
Methyltrithion 82.3 9.3 69.7 5.1 71.5 3.3 79.0 4.2
Metolachlor 78.6 7.0 70.7 3.1 73.1 2.1 82.2 3.6
Metrafenone 74.9 7.9 75.0 4.4 73.8 0.5 87.1 7.2
Metribuzin 77.1 4.0 68.4 2.4 72.8 3.8 86.9 5.2
MGK-264_1 78.6 7.1 76.1 2.5 76.3 4.5 86.5 5.4
MGK-264_2 80.1 9.5 71.6 3.0 74.7 2.0 80.7 4.4
Mirex 53.6 9.6 70.0 1.2 48.7 3.0 77.7 4.4
Molinate 71.8 6.6 76.7 3.1 66.4 1.8 69.9 2.3
Monolinuron 69.8 2.5 68.2 2.9 72.6 3.2 83.8 4.4
Myclobutanil 79.9 9.6 71.9 2.6 70.8 4.4 97.8 9.4
Napropamide 84.5 13.3 72.6 3.7 75.1 4.7 85.3 2.2
Nitrapyrin 71.8 2.8 59.7 2.2 60.7 1.1 65.4 1.5
Nitrothal-isopropyl 85.5 3.1 65.8 3.8 74.0 6.8 89.3 6.4
Nonachlor_cis 66.3 9.8 46.4 4.8 59.7 3.2 77.3 4.8
Nonachlor_trans 61.7 11.1 47.9 4.7 58.1 2.8 81.8 3.8
Norflurazon 82.4 7.9 74.9 3.4 73.6 2.8 83.6 3.2
Nuarimol 80.0 7.8 75.9 1.9 71.4 2.7 91.1 10.1
Ofurace 77.2 7.3 73.6 1.4 73.7 4.0 87.3 5.4
Oxadiazon 79.3 8.8 75.1 3.0 75.7 1.5 96.6 6.7
Oxadixyl 56.6 22.3 61.5 6.9 26.9 8.5 80.1 3.3
Oxyflofen 86.9 3.7 72.5 2.6 73.7 11.4 67.9 14.5
Paclobutrazole 81.2 8.4 69.5 3.3 72.2 5.2 93.8 8.2
Parathion-ethyl 85.6 4.8 67.7 4.2 74.1 6.0 89.0 6.2
Parathion-methyl 79.7 2.1 70.1 3.7 76.4 3.2 87.2 2.0
Pebulate 68.6 6.1 61.7 2.0 63.7 1.5 66.2 2.2
Penconazole 83.2 8.3 70.7 3.0 73.5 2.4 83.3 1.2
Pendimethalin 80.6 5.3 67.1 4.3 76.4 5.4 90.3 7.9
Penflufen 82.3 7.1 66.4 2.9 76.3 3.1 88.3 3.9
Pentachlorobezonitrile 79.4 1.7 72.0 3.5 69.2 2.8 76.2 5.2
Penthiopyrad 81.4 8.9 76.7 2.8 75.7 4.5 1.6 0.6
Pentoxazon 78.0 5.9 74.8 2.6 74.3 1.6 87.1 5.6
Permethrin-1 71.9 8.8 80.9 3.0 71.0 2.0 83.7 4.5
Permethrin-2 130.3 8.5 77.9 2.2 67.7 4.5 86.8 5.8
Perthane 69.6 7.8 67.8 2.3 66.9 1.8 82.3 4.5
Phenothrin 97.5 7.8 81.0 4.8 66.9 3.4 96.1 13.3
Phenthoate 80.8 7.2 72.5 2.4 76.5 3.5 83.6 4.6
Phorate 75.2 5.2 63.5 1.6 70.1 3.1 79.3 5.7
Phosalone 76.7 7.5 73.3 3.7 72.3 3.3 105.9 12.1
Phosmet(PMP) 83.6 7.3 71.9 3.9 73.8 3.9 98.8 9.6
Phosphamidone 85.1 17.3 58.8 11.6 49.6 11.8 43.4 29.2
Picolinafen 80.7 6.9 72.9 3.2 76.2 1.4 91.7 5.2
Picoxystrobin 85.7 8.5 74.2 3.2 73.0 5.3 63.1 3.0
Piperonyl butoxide 79.9 8.9 76.2 2.4 74.9 2.0 102.5 8.4
Piperophos 80.9 6.0 69.4 2.3 73.8 4.1 119.1 15.3
Pirimiphos-ethyl 78.1 10.2 69.1 1.6 74.0 2.3 88.2 7.6
Pirimiphos-methyl 82.7 7.3 70.8 2.1 71.3 7.0 80.2 11.1
Pretilachlor 81.2 8.6 74.7 3.9 75.8 1.4 82.8 3.5
Primicarb 78.2 6.6 68.7 3.5 71.7 2.2 80.7 1.8
Probenazole 83.3 7.4 78.1 4.9 79.5 3.5 71.2 11.8
Prochloraz 75.9 7.0 72.6 3.5 68.6 2.2 70.7 9.8
Procymidone 83.6 8.0 75.0 2.7 75.4 2.7 87.7 4.4
Profenofos 74.1 8.6 70.1 1.3 75.9 2.8 77.3 2.6
Profluralin 81.4 1.3 71.1 3.7 74.9 3.3 88.7 7.3
Prometon 75.2 4.7 68.3 2.6 70.4 3.9 82.3 3.0
Prometryn 77.5 8.3 72.8 1.1 72.9 3.1 74.5 13.6
Pronamide 79.5 3.5 72.9 3.8 73.5 2.0 79.9 3.2
Propachlor 75.0 6.3 71.1 2.3 70.1 2.2 78.2 3.5
Propanil 83.4 7.8 73.7 2.1 76.1 4.3 82.5 6.7
Propazine 74.9 9.1 70.9 2.1 74.2 2.6 79.9 4.9
Propetamphos 77.8 4.2 72.7 4.0 72.6 3.1 93.9 6.0
Propham 72.7 14.2 66.9 5.7 57.7 3.5 75.3 12.9
Propiconazole-1 80.5 6.0 70.2 1.9 70.0 4.7 92.7 4.5
Propiconazole-2 77.8 6.7 69.9 1.5 73.6 1.5 80.4 9.0
Propisochlor 80.4 5.7 74.1 3.0 75.6 2.3 79.6 1.8
Prothiophos 76.3 7.9 72.8 2.5 66.1 3.7 84.6 4.0
Pyracabolid 85.7 8.6 71.7 2.0 72.3 3.4 86.2 6.0
Pyraclofos 72.4 6.9 73.7 4.6 75.1 6.2 98.3 7.5
Pyrazophos 77.9 3.4 74.9 5.5 75.5 6.5 110.8 10.0
Pyridaben 119.5 6.0 77.1 2.7 71.6 2.1 87.2 4.5
Pyridalyl 70.2 8.4 80.6 2.5 61.1 2.6 97.5 4.9
Pyridaphenthion 84.1 6.1 69.8 1.7 72.9 4.4 120.3 14.9
Pyrifenox 1 76.4 6.7 60.8 1.6 61.8 6.0 62.5 5.1
Pyrifenox 2 79.9 9.3 65.1 5.1 58.3 5.5 50.3 4.5
Pyrimidifen 81.7 4.2 79.7 3.3 74.7 1.3 98.8 6.2
Pyriminobac-methyl(E) 79.8 7.5 74.3 1.9 77.6 2.5 101.2 6.6
Quinalphos 82.3 5.7 69.9 2.5 69.3 3.3 86.7 7.3
Quinoxyfen 75.8 8.5 74.8 2.0 70.4 1.5 80.5 2.6
Quintozene 71.5 4.1 66.5 4.9 63.4 3.5 78.4 4.0
Sectumeton 79.8 11.9 70.3 4.2 74.2 4.1 81.2 6.3
Silafluofen 69.1 8.0 79.7 2.4 64.8 2.4 87.2 2.8
Simeconazole 76.2 5.8 70.1 2.7 71.3 3.1 88.9 7.5
Simetryn 93.6 5.5 69.0 3.7 70.6 4.5 83.1 3.8
Spiromesifen 76.6 8.7 77.6 3.3 75.4 1.3 79.8 7.5
Spiroxamine 1 68.8 4.3 68.8 3.0 68.8 3.5 81.1 8.7
Spiroxamine_2 70.2 6.4 69.6 3.1 68.8 5.2 81.5 7.3
Sulfotep 73.6 5.9 72.2 3.3 75.3 2.7 90.4 4.1
Sulprofos 76.4 7.6 75.2 2.6 70.4 3.8 84.1 4.1
TCMTB 88.1 12.7 70.7 5.9 72.0 11.5 84.1 7.1
Tebuconazole 77.7 7.4 75.6 1.9 71.0 1.8 88.1 6.8
Tebufenpyrad 79.3 4.4 74.9 2.2 75.9 1.5 86.1 5.3
Tebupirimfos 76.4 5.8 70.6 4.3 71.8 1.9 85.5 5.2
Tefluthrin 76.0 8.0 75.9 3.1 72.6 2.5 81.3 3.2
Terbacil 79.6 7.3 69.4 3.5 70.9 2.4 89.0 5.9
Terbufos 73.5 6.4 67.3 1.7 70.2 3.2 87.2 4.6
Terbumeton 74.2 9.3 69.9 2.5 71.9 2.6 82.4 6.6
Terbuthylazine 74.5 4.9 73.7 1.9 69.8 4.5 82.8 5.6
Terbutryn 77.9 8.5 74.3 2.9 73.3 3.7 89.8 2.9
Tetrachlorvinphos 76.8 5.5 72.1 3.2 70.6 3.5 86.7 2.1
Tetraconazole 81.3 9.1 69.8 4.6 73.0 5.4 89.5 4.1
Tetradifon 79.9 6.9 75.7 2.2 70.5 2.1 80.1 4.7
Tetramethrin-1 82.2 7.3 81.6 3.7 79.1 5.3 101.1 14.6
Tetramethrin-2 84.0 6.7 75.2 2.8 75.3 4.0 92.8 5.4
Tetrasul 62.7 10.9 73.2 1.7 55.5 3.2 76.0 5.4
Thiazopyr 83.2 7.0 74.7 3.1 73.2 4.4 86.8 5.8
Thifluzamide 86.1 8.6 73.9 2.5 70.8 4.8 82.8 5.8
Thiometon 71.2 4.4 49.2 9.0 68.1 3.0 60.7 4.9
Thionazin 76.5 2.6 70.0 3.5 70.8 2.4 82.5 4.7
Tolclofos_methyl 76.3 6.3 69.3 3.3 72.0 2.1 79.4 2.6
Tolfenpyrad 77.9 6.4 78.0 4.2 76.6 1.8 95.4 7.4
Tolylfluanid 81.0 7.5 76.4 2.4 71.8 3.4 71.3 5.5
Tralomethrin-1 116.4 2.6 65.3 5.4 55.1 8.8 140.2 42.3
Tralomethrin-2 78.8 2.8 77.3 5.2 73.4 3.9 91.4 3.2
Triadimefon 76.5 9.1 70.2 2.7 76.2 3.3 78.9 4.3
Triadimenol 80.0 7.9 70.7 3.4 72.6 1.9 97.8 8.5
Triallate 72.1 9.6 70.7 3.7 69.5 1.7 80.0 4.3
Triazophos 83.8 8.8 78.3 13.8 73.9 4.6 98.2 4.4
Tribufos 79.5 7.8 71.9 2.6 70.5 5.1 86.3 9.0
Tridiphane 70.7 8.3 71.6 2.7 69.0 2.4 85.4 4.6
Triflumizole 79.6 7.3 71.6 3.1 72.7 1.7 90.4 6.9
Triflumuron 82.4 4.8 75.4 2.5 72.6 0.6 84.8 4.7
Trifluralin 77.4 3.7 71.0 3.8 76.4 4.3 79.1 4.1
Uniconazole 80.5 7.5 72.5 3.6 72.1 4.8 81.4 3.7
Vernlolate 68.6 6.8 60.2 2.1 63.0 1.0 64.7 2.0
Vinclozoline 78.5 4.6 75.7 2.2 72.7 0.7 82.7 7.8
Zoxamide 95.4 11.2 74.0 3.2 70.1 1.0 110.5 32.5

3.1.3. Limit of Quantification

Among the target pesticides in this study, certain compounds did not have an established MRL for specific agricultural products. Thus, to develop a method that can detect pesticides at a level of ≤0.01 mg/kg, which is the PLS criterion of non-detection required for pesticides, 0.01 mg/kg extracts of coffee, potato, corn, and chili pepper samples were prepared using the pretreatment method developed in this study. A S/N ratio of ≥10 was obtained for all 322 pesticides in the four samples. This confirms that the developed method is suitable for determining if a given agricultural product is in compliance with the ≤0.01 mg/kg MRL required by the PLS. Figure S2 shows chromatograms for GC-MS/MS pesticides.

Based on the results, the MRM developed in this study was confirmed to comply with the international standard and enables the simultaneous qualitative and quantitative analyses of pesticide compounds using a single pretreatment process. Certain compounds were not within the guideline recovery range; however, a certain level of reproducibility was maintained at a low LOQ of ≤0.01 mg/kg. This indicates that, although the method may not be suitable for the quantitative analyses of these compounds, it can be used for qualitative analyses to confirm the presence of pesticide residues in food products.

3.2. Pesticide Residue Concentration in Agricultural Products

To investigate the current state of pesticide residues in commercially available agricultural products, ten products that are frequently consumed in high amounts (chili pepper, carrot, garlic stem, mango, wheat, banana, almond, cabbage, coffee, and pineapple) were purchased from major supermarkets or wholesale markets in regions of the Republic of Korea, including Busan, Gimhae, and Yangsan. The amount of each product that was purchased was determined based on the level of consumption by the national population. Consequently, the highest number of samples taken was for bananas (24 samples) and the lowest number was for garlic stems (seven samples). A total of 135 samples of agricultural products were collected; the number of samples per agricultural product and the detection results are shown in Table 5.

Table 5.

Pesticides frequencies, concentrations, and maximum residue limits in agricultural products.

Agricultural Product Number of
Samples
Detected Pesticides Concentration
(mg/kg)
MRL *
(mg/kg)
1 Chili pepper 21 0 0 0
2 Carrot 17 0 0 0
3 Stem of garlic 7 0 0 0
4 Mango 10 Chlorpyrifos 0.02 0.4
Fludioxonil 0.05 2.0
5 Wheat 14 0 0 0
6 Banana 24 0 0 0
7 Almond 10 0 0 0
8 Cabbage 10 0 0 0
9 Coffee bean 12 0 0 0
10 Pineapple 10 Prochloraz 0.01 5.0
0.4 5.0
0.02 5.0
Fludioxonil 0.01 20
Total 135 3

* Ministry of Food and Drug Safety (MFDS), MFDS Notification (No. 2021-26, 25 March 2021).

In the 135 samples of ten types of agricultural products, three pesticides were detected: chlorpyrifos, fludioxonil, and prochloraz, and an exposure assessment was conducted. The daily intake was estimated based on the amount of pesticide detected and the corresponding consumption of the agricultural product. Table 6 shows the estimated daily intake (EDI) against the acceptable daily intake (ADI) (EDI/ADI %), which is calculated using the 7th Korea National Health and Nutrition Examination Survey (KNHANES VII-1). Considering Korean dietary habits, the EDI of pesticides was calculated according to pesticide intake amount (mg) per kg of body weight.

Table 6.

Exposure assessment of pesticides in agricultural products.

No. Pesticide ADI *
(** mg/kg bw/day)
Agricultural Product Concentration
(mg/kg)
Mean Concentration
(mg/kg)
Average Intake
(g/day)
EDI ***
(mg/kg bw/day)
EDI/ADI (%)
1 Chlorpyrifos 0.00016 Mango 0.02 0.0200 0.8986 3.0 × 10−7 0.002995
2 Fludioxonil 0.00667 Mango 0.05 0.0500 0.8986 7.5 × 10−7 0.000187
Fludioxonil Pineapple 0.01 0.0100 1.4815 2.5 × 10−7 0.000062
3 Prochloraz 0.00016 Pineapple 0.01 0.1433 1.4815 3.5 × 10−6 0.035383
Prochloraz Pineapple 0.4
Prochloraz Pineapple 0.02

* ADI = acceptable daily intake; ** mg/kg bw/day = mg/kg body-weight/day; *** EDI = estimated daily intake.

The exposure assessments on the three pesticides, chlorpyrifos, fludioxonil, and prochloraz, revealed that the values of the EDI against the ADI (EDI/ADI) were 0.002995%, 0.000187% (Mango), 0.000062% (Pineapple), and 0.035391%, respectively. This indicated that the health risk from consuming the residual pesticides on the collected agricultural products was considerably low and would further decrease during processes such as washing and cooking [37,38].

4. Conclusions

The proposed GC-MS/MS, combined with the QuEChERS method, has been successfully employed for the simultaneous multi-pesticide residue analysis in Korean agricultural products. This methodology demonstrated high selectivity and sensitivity with satisfying the PLS criterion of 0.01 mg/kg for the LOQ. Moreover, the EDI and ADI were also calculated to facilitate the assessment of potential health risks (EDI/ADI) posed by the analyzed products. The findings of this research establish the comprehensive screening standard method for various pesticides and advances food safety management. Further studies expanding to other types of pesticides in various agricultural products will be essential for improving food safety measurement and public health in Korea.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/foods12163001/s1.

Author Contributions

Conceptualization, B.-S.C.; methodology, W.-J.C., W.-S.K. and C.-W.P.; software, W.-J.C., W.-S.K. and C.-W.P.; validation, B.-S.C. and D.-U.L.; formal analysis, W.-J.C., W.-S.K. and C.-W.P.; investigation, B.-S.C.; resources, W.-J.C., W.-S.K. and C.-W.P.; data curation, B.-S.C. and D.-U.L.; writing—original draft preparation, B.-S.C. and D.-U.L.; writing—review and editing, D.-U.L. and M.-J.M.; visualization, B.-S.C. and D.-U.L.; supervision, M.-J.M.; project administration, B.-S.C. and M.-J.M.; funding acquisition, B.-S.C. and M.-J.M. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

All available data are contained within the article.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This research received no external funding.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Kalyabina V.P., Esimbekova E.N., Kopylova K.V., Kratasyuk V.A. Pesticides: Formulants, Distribution Pathways and Effects on Human Health—A Review. Toxicol. Rep. 2021;8:1179–1192. doi: 10.1016/j.toxrep.2021.06.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Pathak V.M., Verma V.K., Rawat B.S., Kaur B., Babu N., Sharma A., Dewali S., Yadav M., Kumari R., Singh S. Current Status of Pesticide Effects on Environment, Human Health and It’s Eco-Friendly Management as Bioremediation: A Comprehensive Review. Front. Microbiol. 2022;13:2833. doi: 10.3389/fmicb.2022.962619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Aktar W., Sengupta D., Chowdhury A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009;2:1. doi: 10.2478/v10102-009-0001-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Tang F.H.M., Lenzen M., McBratney A., Maggi F. Risk of Pesticide Pollution at the Global Scale. Nat. Geosci. 2021;14:206–210. doi: 10.1038/s41561-021-00712-5. [DOI] [Google Scholar]
  • 5.World Health Organization. Food and Agriculture Organization of the United Nations . Global Situation of Pesticide Management in Agriculture and Public Health: Report of a 2018 WHO-FAO Survey. Food and Agriculture Organization; Rome, Italy: 2019. [Google Scholar]
  • 6.Yeung M.T., Kerr W.A., Coomber B., Lantz M., McConnell A., Yeung M.T., Kerr W.A., Coomber B., Lantz M., McConnell A. Declining International Cooperation on Pesticide Regulation: Frittering Away Food Security. Springer Nature (Palgrave Macmillan Imprint); Cham, Switzerland: 2017. Why Maximum Residue Limits for Pesticides Are an Important International Issue; pp. 1–9. [Google Scholar]
  • 7.U. S. Department of Agriculture Maximum Residue Limits (MRL) Database. [(accessed on 19 June 2023)]; Available online: https://www.fas.usda.gov/maximum-residue-limits-mrl-database.
  • 8.Saito-Shida S., Nemoto S., Akiyama H. Multiresidue Method for Determining Multiclass Acidic Pesticides in Agricultural Foods by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Methods. 2021;13:894–902. doi: 10.1039/D0AY02101F. [DOI] [PubMed] [Google Scholar]
  • 9.Tauseef M., Rafique N., Ahmad I., Ishtiaq M., Samad A., Saba S., Ahad K., Mehboob F. Analysis of Multiple Pesticide Residues in Rice by LC–MS/MS. Chem. Pap. 2021;75:2871–2879. [Google Scholar]
  • 10.Parshintsev J., Hyötyläinen T. Methods for Characterization of Organic Compounds in Atmospheric Aerosol Particles. Anal. Bioanal. Chem. 2015;407:5877–5897. doi: 10.1007/s00216-014-8394-3. [DOI] [PubMed] [Google Scholar]
  • 11.Hofmann A.E., Chimiak L., Dallas B., Griep-Raming J., Juchelka D., Makarov A., Schwieters J., Eiler J.M. Using Orbitrap Mass Spectrometry to Assess the Isotopic Compositions of Individual Compounds in Mixtures. Int. J. Mass Spectrom. 2020;457:116410. doi: 10.1016/j.ijms.2020.116410. [DOI] [Google Scholar]
  • 12.Lehotay S.J. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Palgrave Macmillan, John Wiley & Sons; Hoboken, NJ, USA: 2006. Multiclass, Multiresidue Analysis of Pesticides, Strategies For. [Google Scholar]
  • 13.Wang Y., Han J., Zhang J., Li X., Bai R., Hu F. A Monitoring Survey and Health Risk Assessment for Pesticide Residues on Codonopsis Radix in China. Sci. Rep. 2022;12:8133. doi: 10.1038/s41598-022-11428-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Campanale C., Massarelli C., Losacco D., Bisaccia D., Triozzi M., Uricchio V.F. The Monitoring of Pesticides in Water Matrices and the Analytical Criticalities: A Review. TrAC-Trends Anal. Chem. 2021;144:116423. doi: 10.1016/j.trac.2021.116423. [DOI] [Google Scholar]
  • 15.Sarraf M., Beig-babaei A., Naji-Tabasi S. Application of QuEChERS Method for Extraction of Functional Compounds. SN Appl. Sci. 2020;2:1858. doi: 10.1007/s42452-020-03639-5. [DOI] [Google Scholar]
  • 16.Perestrelo R., Silva P., Porto-Figueira P., Pereira J.A.M., Silva C., Medina S., Câmara J.S. QuEChERS-Fundamentals, Relevant Improvements, Applications and Future Trends. Anal. Chim. Acta. 2019;1070:1–28. doi: 10.1016/j.aca.2019.02.036. [DOI] [PubMed] [Google Scholar]
  • 17.Eslami Z., Mahdavi V., Tajdar-oranj B. Probabilistic health risk assessment based on Monte Carlo simulation for pesticide residues in date fruits of Iran. Environ. Sci. Pollut. Res. 2021;28:42037–42050. doi: 10.1007/s11356-021-13542-0. [DOI] [PubMed] [Google Scholar]
  • 18.García-Vara M., Postigo C., Palma P., de Alda M.L. Development of QuEChERS-Based Multiresidue Analytical Methods to Determine Pesticides in Corn, Grapes and Alfalfa. Food Chem. 2023;405:134870. doi: 10.1016/j.foodchem.2022.134870. [DOI] [PubMed] [Google Scholar]
  • 19.Kim L., Lee D., Cho H.-K., Choi S.-D. Review of the QuEChERS Method for the Analysis of Organic Pollutants: Persistent Organic Pollutants, Polycyclic Aromatic Hydrocarbons, and Pharmaceuticals. Trends Environ. Anal. Chem. 2019;22:e00063. doi: 10.1016/j.teac.2019.e00063. [DOI] [Google Scholar]
  • 20.Musarurwa H., Chimuka L., Pakade V.E., Tavengwa N.T. Recent Developments and Applications of QuEChERS Based Techniques on Food Samples during Pesticide Analysis. J. Food Compos. Anal. 2019;84:103314. [Google Scholar]
  • 21.Lehotay S.J., Son K.A., Kwon H., Koesukwiwat U., Fu W., Mastovska K., Hoh E., Leepipatpiboon N. Comparison of QuEChERS Sample Preparation Methods for the Analysis of Pesticide Residues in Fruits and Vegetables. J. Chromatogr. A. 2010;1217:2548–2560. doi: 10.1016/j.chroma.2010.01.044. [DOI] [PubMed] [Google Scholar]
  • 22.Andersson A., Palsheden H. Comparison of the efficiency of different GLC multi-residue methods on crops containing pesticide residues. Fresenius J. Anal. Chem. 1991;339:365–367. doi: 10.1007/BF00322349. [DOI] [Google Scholar]
  • 23.Anastassiades M., Lehotay S.J., Stajnbaher D., Schenck F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003;86:412–431. [PubMed] [Google Scholar]
  • 24.Luke M.A., Froberg J.E., Masumoto H.T. Extraction and cleanup of organochlorine, organophosphate, organonitrogen, and hydrocarbon pesticides in produce for determination by gas-liquid chromatography. J. Assoc. Off. Anal. Chem. 1975;58:1020–1026. doi: 10.1093/jaoac/58.5.1020. [DOI] [PubMed] [Google Scholar]
  • 25.Jo H.-W., Park M.-K., Heo H., Jeon H.-J., Choi S.-D., Lee S.-E., Moon J.-K. Simultaneous Determination of 13 Mycotoxins in Feedstuffs Using QuEChERS Extraction. Appl. Biol. Chem. 2021;64:34. [Google Scholar]
  • 26.Yuan X., Kim C.J., Lee R., Kim M., Shin H.J., Kim L., Jeong W.T., Shin Y., Kyung K.S., Noh H.H. Validation of a Multi-Residue Analysis Method for 287 Pesticides in Citrus Fruits Mandarin Orange and Grapefruit Using Liquid Chromatography–Tandem Mass Spectrometry. Foods. 2022;11:3522. doi: 10.3390/foods11213522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Ali S.E.A., Aziz M.E.A., Mohamed S.E. Determination of Pesticides Residues in Eggplant and Tomatoes from Central Marked in Khartoum State Using Quechers Method and Gas Liquid Chromatography-Mass Spectrometry. Biomed. J. Sci. Tech. Res. 2020;24:18165–18173. [Google Scholar]
  • 28.Ngabirano H., Birungi G. Pesticide Residues in Vegetables Produced in Rural South-Western Uganda. Food Chem. 2022;370:130972. doi: 10.1016/j.foodchem.2021.130972. [DOI] [PubMed] [Google Scholar]
  • 29.Belarbi S., Vivier M., Zaghouani W., De Sloovere A., Agasse-Peulon V., Cardinael P. Comparison of new approach of GC-HRMS (Q-Orbitrap) to GC–MS/MS (triple-quadrupole) in analyzing the pesticide residues and contaminants in complex food matrices. Food Chem. 2021;359:129932. doi: 10.1016/j.foodchem.2021.129932. [DOI] [PubMed] [Google Scholar]
  • 30.Zhang Y., Si W., Chen L., Shen G., Bai B., Zhou C. Determination and dietary risk assessment of 284 pesticide residues in local fruit cultivars in Shanghai, China. Sci. Rep. 2021;11:9681. doi: 10.1038/s41598-021-89204-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Lee J., Kim L., Shin Y., Lee J., Lee J., Kim E., Moon J.-K., Kim J.-H. Rapid and Simultaneous Analysis of 360 Pesticides in Brown Rice, Spinach, Orange, and Potato Using Microbore GC-MS/MS. J. Agric. Food Chem. 2017;65:3387–3395. doi: 10.1021/acs.jafc.7b00576. [DOI] [PubMed] [Google Scholar]
  • 32.Foods of Plant Origin—Multimethod for the Determination of Pesticide Residues Using GC- and LC-Based Analysis Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE–Modular QuEChERS-Method. European Committee for Standardization; Brussels, Belgium: 2018. [Google Scholar]
  • 33.Ministry of Food and Drug Safety (MFDS) Guideline of Standard Procedures of Test Methods for Foods and Other Substances. Ministry of Food and Drug Safety (MFDS); Cheongju, Republic of Korea: 2016. [Google Scholar]
  • 34.World Health Organization. Food and Agriculture Organization of the United Nations . Confirmation of Pesticides by GC/MS/MS. Food and Agriculture Organization; Rome, Italy: 2010. [Google Scholar]
  • 35.Bozena L., Magdalena J. Influence of QuEChERS modifications on recovery and matrix effect during the multi-residue pesticide analysis in soil by GC/MS/MS and GC/ECD/NPD. Environ. Sci. Pollut. Res. 2017;24:7124–7138. doi: 10.1007/s11356-016-8334-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Guidance Document on Pesticide Analytical Methods for Risk Assessment and Post-Approval Control and Monitoring Purposes, SANTE/2020/12830, Rev.1. [(accessed on 24 February 2021)]. Available online: https://food.ec.europa.eu/system/files/2021-03/pesticides_ppp_app-proc_guide_res_mrl-guidelines-2020-12830.pdf.
  • 37.Lee H., Cho M., Park M., Kim M., Seo J.-A., Kim D.H., Bae S., Kim M.S., Kim J.A., Lee J.-G. Effect of Rice Milling, Washing, and Cooking on Reducing Pesticide Residues. Food Sci. Biotechnol. 2023 doi: 10.1007/s10068-023-01345-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Wu Y., An Q., Li D., Wu J., Pan C. Comparison of Different Home/Commercial Washing Strategies for Ten Typical Pesticide Residue Removal Effects in Kumquat, Spinach and Cucumber. Int. J. Environ. Res. Public Health. 2019;16:472. doi: 10.3390/ijerph16030472. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

All available data are contained within the article.


Articles from Foods are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES