Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1996 Mar;33(3):237–239. doi: 10.1136/jmg.33.3.237

Cytogenetic and clinical characteristics of a case involving complete duplication of Xpter-->Xq13.

S M Jalal 1, R Dahl 1, L Erickson 1, D Zimmerman 1, N Lindor 1
PMCID: PMC1051876  PMID: 8728700

Abstract

True isochromosomes for Xp probably do not exist in a liveborn. We describe a rare case of complete Xp duplication and retention of the inactivation centre at Xq13. Cytogenetically, it is described as a nonmosaic 46,X,psu idic(X)(q13). Complete duplication of Xpter-->Xq13 was confirmed by banded analysis and FISH probes for X centromere, Xp21, XIST locus, and whole chromosome paints for X and Y. The abnormal X was always late replicating. Clinically, the patient was short statured, had primary amenorrhoea, and incomplete development of secondary sexual characteristics, but otherwise was phenotypically normal. There are no non-mosaic reported cases with complete duplication of i(Xp) confirmed by FISH or molecular techniques. Those cases with partial duplication of Xp and presence of the inactivation centre share the traits of amenorrhoea and poor secondary sexual development. To develop a clinical profile of duplication of Xp (in presence of Xq13) there is a need to study more cases.

Full text

PDF
239

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abulhasan S. J., Teebi A. S., Zaki M., Hammad I., Al-Awadi S. A., Krishna Murthy D. S. Mosaicism 45,X/46,X, t dic(Xp:Xp) in a girl with short stature. Ann Genet. 1990;33(4):234–238. [PubMed] [Google Scholar]
  2. Brown C. J., Ballabio A., Rupert J. L., Lafreniere R. G., Grompe M., Tonlorenzi R., Willard H. F. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991 Jan 3;349(6304):38–44. doi: 10.1038/349038a0. [DOI] [PubMed] [Google Scholar]
  3. Caspersson T., Lindsten J., Zech L. The nature of structural X chromosome aberrations in Turner's syndrome as revealed by quinacrine mustard fluorescence analysis. Hereditas. 1970;66(2):287–292. doi: 10.1111/j.1601-5223.1970.tb02352.x. [DOI] [PubMed] [Google Scholar]
  4. Daniel A., Saville T., Southall D. B. Further dicentric X isochromosomes and deletions, and a new structure i(X)(pter to q2102 to pter). J Med Genet. 1979 Aug;16(4):278–284. doi: 10.1136/jmg.16.4.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De la Chapelle A., Schröder J., Pernu M. Isochromosome for the short arm of X, a human 46, XXpi syndrome. Ann Hum Genet. 1972 Jul;36(1):79–87. doi: 10.1111/j.1469-1809.1972.tb00583.x. [DOI] [PubMed] [Google Scholar]
  6. Fitzgerald P. H., Donald R. A. Isochromosome for the short arm of X: a human mosaic 45,x/46,XXpi. Clin Genet. 1975 Feb;7(2):148–154. doi: 10.1111/j.1399-0004.1975.tb00311.x. [DOI] [PubMed] [Google Scholar]
  7. Hook E. B., Warburton D. The distribution of chromosomal genotypes associated with Turner's syndrome: livebirth prevalence rates and evidence for diminished fetal mortality and severity in genotypes associated with structural X abnormalities or mosaicism. Hum Genet. 1983;64(1):24–27. doi: 10.1007/BF00289473. [DOI] [PubMed] [Google Scholar]
  8. Jalal S. M., Law M. E., Christensen E. R., Spurbeck J. L., Dewald G. W. Method for sequential staining of GTL-banded metaphases with fluorescent-labeled chromosome-specific paint probes. Am J Med Genet. 1993 Apr 1;46(1):98–103. doi: 10.1002/ajmg.1320460117. [DOI] [PubMed] [Google Scholar]
  9. Keogh E. J., De Kretser D. M., Fitzgerald M. G. Isochromosome for the short arm of X with primary amenorrhoea and a pituitary tumour. Aust N Z J Med. 1973 Dec;3(6):617–619. doi: 10.1111/j.1445-5994.1973.tb04305.x. [DOI] [PubMed] [Google Scholar]
  10. Leppig K. A., Brown C. J., Bressler S. L., Gustashaw K., Pagon R. A., Willard H. F., Disteche C. M. Mapping of the distal boundary of the X-inactivation center in a rearranged X chromosome from a female expressing XIST. Hum Mol Genet. 1993 Jul;2(7):883–887. doi: 10.1093/hmg/2.7.883. [DOI] [PubMed] [Google Scholar]
  11. Schad C. R., Kraker W. J., Jalal S. M., Tallman M. S., Londer H. N., Cook L. P., Jenkins R. B. Use of fluorescent in situ hybridization for marker chromosome identification in congenital and neoplastic disorders. Am J Clin Pathol. 1991 Aug;96(2):203–210. doi: 10.1093/ajcp/96.2.203. [DOI] [PubMed] [Google Scholar]
  12. Therman E., Sarto G. E., Patau K. Center for Barr body condensation on the proximal part of the human Xq: a hypothesis. Chromosoma. 1974 Jan 29;44(4):361–366. doi: 10.1007/BF00284895. [DOI] [PubMed] [Google Scholar]
  13. Therman E., Susman B. The similarity of phenotypic effects caused by Xp and Xq deletions in the human female: a hypothesis. Hum Genet. 1990 Jul;85(2):175–183. doi: 10.1007/BF00193192. [DOI] [PubMed] [Google Scholar]
  14. Van den Berghe H., Fryns J. P., Devos F. [46, XXip karyotype in a woman with normal stature and gonadal dysgenesis without other congenital anomalies]. Humangenetik. 1973;20(2):163–166. doi: 10.1007/BF00284853. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES