Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Sep;85(1):224–231. doi: 10.1104/pp.85.1.224

Water Binding in Legume Seeds

Christina W Vertucci 1,2,1,2, A Carl Leopold 1,2
PMCID: PMC1054233  PMID: 11539705

Abstract

The physical status of water in seeds has a pivotal role in determining the physiological reactions that can take place in the dry state. Using water sorption isotherms from cotyledon and axis tissue of five leguminous seeds, the strength of water binding and the numbers of binding sites have been estimated using van't Hoff analyses and the D'Arcy/Watt equation. These parameters of water sorption are calculated for each of the three regions of water binding and for a range of temperatures. Water sorption characteristics are reflective of the chemical composition of the biological materials as well as the temperature at which hydration takes place. Changes in the sorption characteristics with temperature and hydration level may suggest hydration-induced structural changes in cellular components.

Full text

PDF
230

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Careri G., Giansanti A., Gratton E. Lysozyme film hydration events: an ir and gravimetric study. Biopolymers. 1979 May;18(5):1187–1203. doi: 10.1002/bip.1979.360180512. [DOI] [PubMed] [Google Scholar]
  2. Clegg J. S. Interrelationships between Water and cellular metabolism in Artemia cysts. VIII Sorption isotherms and derived thermodynamic quantities. J Cell Physiol. 1978 Feb;94(2):123–137. doi: 10.1002/jcp.1040940202. [DOI] [PubMed] [Google Scholar]
  3. Crowe J. H., Crowe L. M. Induction of anhydrobiosis: membrane changes during drying. Cryobiology. 1982 Jun;19(3):317–328. doi: 10.1016/0011-2240(82)90160-2. [DOI] [PubMed] [Google Scholar]
  4. Gekko K., Timasheff S. N. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry. 1981 Aug 4;20(16):4667–4676. doi: 10.1021/bi00519a023. [DOI] [PubMed] [Google Scholar]
  5. Jaenicke R. Enzymes under extremes of physical conditions. Annu Rev Biophys Bioeng. 1981;10:1–67. doi: 10.1146/annurev.bb.10.060181.000245. [DOI] [PubMed] [Google Scholar]
  6. KLOTZ I. M. Non-covalent bonds in protein structure. Brookhaven Symp Biol. 1960 Nov;13:25–48. [PubMed] [Google Scholar]
  7. Kuntz I. D., Jr, Kauzmann W. Hydration of proteins and polypeptides. Adv Protein Chem. 1974;28:239–345. doi: 10.1016/s0065-3233(08)60232-6. [DOI] [PubMed] [Google Scholar]
  8. McKersie B. D., Stinson R. H. Effect of Dehydration on Leakage and Membrane Structure in Lotus corniculatus L. Seeds. Plant Physiol. 1980 Aug;66(2):316–320. doi: 10.1104/pp.66.2.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Priestley D. A., de Kruijff B. Phospholipid Motional Characteristics in a Dry Biological System : A P-Nuclear Magnetic Resonance Study of Hydrating Typha latifolia Pollen. Plant Physiol. 1982 Oct;70(4):1075–1078. doi: 10.1104/pp.70.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schneider M. J., Schneider A. S. Water in biological membranes: adsorption isotherms and circular dichroism as a function of hydration. J Membr Biol. 1972;9(2):127–140. [PubMed] [Google Scholar]
  11. Vertucci C. W., Ellenson J. L., Leopold A. C. Chlorophyll fluorescence characteristics associated with hydration level in pea cotyledons. Plant Physiol. 1985 Sep;79(1):248–252. doi: 10.1104/pp.79.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vertucci C. W., Leopold A. C. Bound water in soybean seed and its relation to respiration and imbibitional damage. Plant Physiol. 1984 May;75(1):114–117. doi: 10.1104/pp.75.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES