Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Nov;85(3):751–756. doi: 10.1104/pp.85.3.751

Evaluation of Reductive Release as a Mechanism for Iron Uptake from Ferrioxamine B by Chlorella vulgaris

F C Thomas Allnutt 1,2,1, Walter D Bonner Jr 1,2,2
PMCID: PMC1054334  PMID: 16665772

Abstract

The involvement of ferric reduction in the iron uptake mechanism of iron-stressed Chlorella vulgaris from ferrioxamine B was investigated. Some comparative data for ferric-citrate was also obtained. EPR and a spectrophotometric assay were used to measure Fe3+ reduction. These two methods differed in the absolute quantity but not in effectors of ferric reduction. The mechanism governing ferric reduction was investigated by use of respiratory inhibitors, uncouplers, alternative electron acceptors, and ATPase inhibitors. Reduction appears to play a role in iron uptake from both Fe3+-deferrioxamine B and Fe3+-citrate; however, the involvement of photoreduction in Fe3+-citrate uptake implies multiple reductive mechanisms could be involved.

Full text

PDF
753

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allnutt F. C., Bonner W. D. Characterization of Iron Uptake from Ferrioxamine B by Chlorella vulgaris. Plant Physiol. 1987 Nov;85(3):746–750. doi: 10.1104/pp.85.3.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allnutt F. C., Bonner W. D. Correction of Freezing Artifacts in the Application of Electron Paramagnetic Resonance for Quantification of the Reduction of Ferric Hydroxamate by Chlorella vulgaris. Plant Physiol. 1987 Apr;83(4):739–741. doi: 10.1104/pp.83.4.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atkin C. L., Neilands J. B. Rhodotorulic acid, a diketopiperazine dihydroxamic acid with growth-factor activity. I. Isolation and characterization. Biochemistry. 1968 Oct;7(10):3734–3739. doi: 10.1021/bi00850a054. [DOI] [PubMed] [Google Scholar]
  4. Chaney R. L., Brown J. C., Tiffin L. O. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 1972 Aug;50(2):208–213. doi: 10.1104/pp.50.2.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooper S. R., McArdle J. V., Raymond K. N. Siderophore electrochemistry: relation to intracellular iron release mechanism. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3551–3554. doi: 10.1073/pnas.75.8.3551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ecker D. J., Lancaster J. R., Jr, Emery T. Siderophore iron transport followed by electron paramagnetic resonance spectroscopy. J Biol Chem. 1982 Aug 10;257(15):8623–8626. [PubMed] [Google Scholar]
  7. Jones G. J., Waite T. D., Smith J. D. Light-dependent reduction of copper(II) and its effect on cell-mediated, thiol-dependent superoxide production. Biochem Biophys Res Commun. 1985 Apr 30;128(2):1031–1036. doi: 10.1016/0006-291x(85)90151-2. [DOI] [PubMed] [Google Scholar]
  8. Klingenberg M. Localization of the glycerol-phosphate dehydrogenase in the outer phase of the mitochondrial inner membrane. Eur J Biochem. 1970 Apr;13(2):247–252. doi: 10.1111/j.1432-1033.1970.tb00924.x. [DOI] [PubMed] [Google Scholar]
  9. Leong J., Neilands J. B. Mechanisms of siderophore iron transport in enteric bacteria. J Bacteriol. 1976 May;126(2):823–830. doi: 10.1128/jb.126.2.823-830.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Löw H., Crane F. L. Redox function in plasma membranes. Biochim Biophys Acta. 1978 Jul 31;515(2):141–161. doi: 10.1016/0304-4157(78)90002-3. [DOI] [PubMed] [Google Scholar]
  11. Rubinstein B., Stern A. I., Stout R. G. Redox activity at the surface of oat root cells. Plant Physiol. 1984 Oct;76(2):386–391. doi: 10.1104/pp.76.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Römheld V., Marschner H. Mechanism of iron uptake by peanut plants : I. Fe reduction, chelate splitting, and release of phenolics. Plant Physiol. 1983 Apr;71(4):949–954. doi: 10.1104/pp.71.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sijmons P. C., Lanfermeijer F. C., de Boer A. H., Prins H. B., Bienfait H. F. Depolarization of Cell Membrane Potential during Trans-Plasma Membrane Electron Transfer to Extracellular Electron Acceptors in Iron-Deficient Roots of Phaseolus vulgaris L. Plant Physiol. 1984 Dec;76(4):943–946. doi: 10.1104/pp.76.4.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sijmons P. C., van den Briel W., Bienfait H. F. Cytosolic NADPH is the electron donor for extracellular fe reduction in iron-deficient bean roots. Plant Physiol. 1984 May;75(1):219–221. doi: 10.1104/pp.75.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES