Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2023 Oct 4.
Published in final edited form as: SynOpen. 2023 May 11;7(2):165–185. doi: 10.1055/a-2048-8412

Chemical Reactions of Indole Alkaloids That Enable Rapid Access to New Scaffolds for Discovery

Derek A Leas 1, Daniel C Schultz 1, Robert W Huigens III 1
PMCID: PMC10549995  NIHMSID: NIHMS1932741  PMID: 37795132

Abstract

This graphical review provides a concise overview of indole alkaloids and chemical reactions that have been reported to transform both these natural products and derivatives to rapidly access new molecular scaffolds. Select biologically active compounds from these synthetic efforts are reported herein.

Keywords: indole alkaloids, yohimbine, vincamine, reserpine, chemical synthesis, ring distortion

Graphical Abstract

graphic file with name nihms-1932741-f0001.jpg


Natural products have played an essential role in medicine due to their abilities to bind to and modulate biological targets critical to disease. Vincristine, vancomycin, morphine, and paclitaxel are complex natural products with unique molecular architectures enabling exquisite drug–target interactions and therapeutic benefit to humankind. Many drug discovery programs have focused on utilizing synthetic chemistry to optimize the inherent biological activity, or pharmacology, of natural products as disease treatments; however, this graphical review focuses on synthetic transformations of indole alkaloids and relevant derivatives that would be expected to significantly alter, or re-engineer, their biological activity profiles.

Our group is developing a ring distortion platform to re-engineer the biological activities of readily available indole alkaloids using a combination of ring cleavage, ring rearrangement, and ring fusion reactions to rapidly generate diverse collections of small molecules bearing high stereochemical complexity. We hypothesize that dramatically altering the inherently complex molecular architectures of indole alkaloids will lead to new biologically active small molecules with activity profiles distinct from the parent indole alkaloid and alternative derivatives with diverse scaffolds.

Upon scanning the literature, one can find a diversity of exciting synthetic transformations that have been applied to numerous indole alkaloids and related indole-based molecules. Although these transformations have been used in total synthesis or methodology development, we view these precedented reactions as potential launching points for ring distortion chemistry. The overarching goals of this graphical review are to provide an overview of useful synthetic transformations of indole alkaloids (and related derivatives) by reaction type and for select indole alkaloids (e.g., yohimbine, vincamine).

This graphical review will begin with some basic background information related to a diversity of biologically active indole alkaloids (there are also many synthetic indole compounds of therapeutic utility in significant disease areas). Then, we will transition the graphical review to published ring cleavage and ring rearrangement transformations on indole alkaloids and derivatives. Finally, we will focus on reported transformations of select indole alkaloids (e.g., yohimbine, reserpine, catharanthine) that have been used, or could be useful, to generate novel scaffolds for drug discovery and chemical biology.

Figure 1.

Figure 1

Select indole alkaloids, their biological activities and clinical applications1af

Figure 2.

Figure 2

Indole-promoted C–N ring cleavage reactions employing chloroformates and related electrophiles (Part 1)2a2aa

Figure 3.

Figure 3

Indole-promoted C–N ring cleavage reactions employing chloroformates and related electrophiles (Part 2)3ao

Figure 4.

Figure 4

Indole-promoted C–N cleavage reactions using the von Braun reaction (Part 1)2b,n,4ai

Figure 5.

Figure 5

Indole-promoted C–N cleavage reactions using the von Braun reaction (Part 2)2f,o,5ae

Figure 6.

Figure 6

Indole-promoted Birch ring cleavage reactions6aab

Figure 7.

Figure 7

(A) Indole-promoted C–N ring cleavage via propiolates and other alkynes. (B) Ring cleavage of quaternary ammonium salts (non-Birch reaction).2l,5d,e,6op,7ai

Figure 8.

Figure 8

Oxidative rearrangements to 2- or 3-oxindoles1f,8ae

Figure 9.

Figure 9

Reactions of indole alkaloids to yield 2-oxindole derivatives via ring rearrangement5c,9aj

Figure 10.

Figure 10

(A) Ring rearrangements of indole alkaloids to 3-oxindoles. (B) Ring rearrangements of indole alkaloids to spirooxindole-1,3-oxazines.5d,10aj

Figure 11.

Figure 11

Oxidative cleavage and ring rearrangement of indole alkaloids to give quinolones5e,9f,10f,11as

Figure 12.

Figure 12

Reactions that dramatically change yohimbine’s complex structure5c,11b,12ac

Figure 13.

Figure 13

Reactions that dramatically alter vincamine’s molecular skeleton5d,7a,11i,13af

Figure 14.

Figure 14

Ring distortion efforts of vincamine and yohimbine, and the discovery of biologically active small molecules in significant disease areas (e.g., cancer, opioid addiction, malaria)5c,d,14a,b

Figure 15.

Figure 15

Chemical reactions of reserpine that significantly change its architecture2aa,9j,10b,c,i,12b,15ad

Figure 16.

Figure 16

Reactions that alter catharanthine’s complex structure7g,10h,16ac

Figure 17.

Figure 17

Chemical reactions reported to dramatically change evodiamine’s scaffold10j,11h,17ak

Acknowledgment

We are grateful to current and former members of the Huigens research group who contributed to advances in this area, including both the chemical synthesis and structure elucidation of diverse and complex small molecules synthesized from readily available indole alkaloids and derivatives.

Funding Information

Generous financial support from the National Institutes of Health (NIH) is gratefully acknowledged (National Institute of General Medical Sciences - Grant No. R35GM128621) to R.W.H. D.A.L. was supported by the T-32 Team-Based Interdisciplinary Cancer Research Training (TICaRT) program at the University of Florida Health Cancer Center (T32 CA257923).

Biographies

graphic file with name nihms-1932741-b0002.gif

Derek A. Leas was born and raised in Omaha, Nebraska, USA, where he earned a B.Sc. in medicinal chemistry from the University of Nebraska at Omaha (UNO) in 2014. In 2015, he joined the lab of Prof. Jonathan Vennerstrom at the University of Nebraska Medical Center, where his research focused on the synthesis of novel small molecules for the treatment of the tropical parasitic diseases schistosomiasis and malaria. He obtained his Ph.D. in pharmaceutical sciences in 2020 and joined the group of Prof. Robert Huigens at the University of Florida later that year as a postdoctoral associate, synthesizing complex and diverse compounds from indole alkaloids using various ring cleavage and ring fusion methods.

graphic file with name nihms-1932741-b0003.gif

Daniel Schultz was raised in Orlando, Florida, USA and earned a B.Sc. in mechanical engineering and a B.Sc. in chemistry from the Florida Institute of Technology (USA) in 2017, the latter of which occurred under the mentorship of Prof. Alan Brown, whose research focuses on physical organic chemistry. Later that year, he joined the lab of Prof. Chenglong Li at the University of Florida, where his research involved computer-aided, structure-based drug design and the synthesis of novel protein–protein interaction inhibitors. He obtained his Ph.D. in medicinal chemistry in 2022, and joined the group of Prof. Robert Huigens at the University of Florida later that year as a postdoctoral associate.

graphic file with name nihms-1932741-b0004.gif

Robert Huigens received his Ph.D. in chemistry with Prof. Christian Melander at North Carolina State University in 2009. He subsequently moved to the University of Illinois at Urbana-Champaign under the guidance of Prof. Paul Hergenrother, where he was as an American Cancer Society Postdoctoral Fellow. In 2013, he began his independent career as an assistant professor at the University of Florida where he was then promoted to associate professor of medicinal chemistry in 2020. The Huigens laboratory focuses on the utilization of available complex indole alkaloids to access diverse small molecules for drug discovery and the discovery of novel bacterial biofilm-eradicating agents inspired by natural products.

Footnotes

Conflict of Interest

The authors declare no conflict of interest.

References

  • (1).(a) O’Connor S; Maresh JJ Nat. Prod. Rep 2006, 23, 532. [DOI] [PubMed] [Google Scholar]; (b) Kochanowska-Karamyan AJ; Hamann MT Chem. Rev 2010, 110, 4489. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Stöckigt J; Antonchick AP; Wu F; Waldmann H Angew. Chem. Int. Ed 2011, 50, 8538. [DOI] [PubMed] [Google Scholar]; (d) Sears JE; Boger DL Acc. Chem. Res 2015, 48, 653. [DOI] [PMC free article] [PubMed] [Google Scholar]; (e) Carney DW; Lukesh JC; Brody DM; Brütsch MM; Boger DL Proc. Natl. Acad. Sci. U. S. A 2016, 113, 9691. [DOI] [PMC free article] [PubMed] [Google Scholar]; (f) Norwood VM; Huigens RH III ChemBioChem 2019, 20, 2273. [DOI] [PubMed] [Google Scholar]
  • (2).(a) Dolby LJ; Sakai S-IJ Am. Chem. Soc 1964, 86, 1890. [Google Scholar]; (b) Sakai S-I; Kubo A; Katano K; Shinma N Yakugaku Zasshi 1973, 93, 1165. [DOI] [PubMed] [Google Scholar]; (c) Harley-Mason J; Atta-ur-Rahman Tetrahedron 1980, 36, 1057. [Google Scholar]; (d) Calverley MJJ Chem. Soc., Chem. Commun 1981, 1209. [Google Scholar]; (e) Liu CT; Sun SC; Yu QS J. Org. Chem 1983, 48, 44. [Google Scholar]; (f) Schill G; Löwer H; Priester CU; Windhövel UF; Fritz H Tetrahedron 1987, 43, 3729. [Google Scholar]; (g) Schill G; Priester CU; Windhövel UF; Fritz H Tetrahedron 1987, 43, 3747. [Google Scholar]; (h) Magnus P; Mugrage B; DeLuca MR; Cain GA J. Am. Chem. Soc 1990, 112, 5220. [Google Scholar]; (i) Magnus P; Mugrage B; DeLuca M; Cain GA J. Am. Chem. Soc 1989, 111, 786. [Google Scholar]; (j) Schill G; Priester CU; Windhövel UF; Fritz H Tetrahedron 1990, 46, 1211. [Google Scholar]; (k) Magnus P; Giles M; Bonnert R; Johnson G; McQuire L; DeLuca M; Merritt A; Kim CS; Vicker NJ Am. Chem. Soc 1993, 115, 8116. [Google Scholar]; (l) Foster GH; Harley-Mason J; Waterfield WR Chem. Commun 1967, 21. [Google Scholar]; (m) Sakai S-I; Yamanaka E; Dolby LJ Heterocycles 1976, 4, 981. [Google Scholar]; (n) Banks BJ; Calverley MJ; Edwards PD; Harley-Mason J Tetrahedron Lett. 1981, 22, 1631. [Google Scholar]; (o) Calverley MJ; Harley-Mason J; Quarrie SA; Edwards PD Tetrahedron 1981, 37, 1547. [Google Scholar]; (p) Calverley MJJ Chem. Res., Miniprint 1983, 8, 1848. [Google Scholar]; (q) Schill G; Priester CU; Windhövel UF; Fritz H Helv. Chim. Acta 1986, 69, 438. [Google Scholar]; (r) Schill G; Priester CU; Windhövel UF; Fritz H Tetrahedron 1987, 43, 3765. [Google Scholar]; (s) Takayama H; Masubuchi K; Kitajima M; Aimi N; Sakai S-I Tetrahedron 1989, 45, 1327. [Google Scholar]; (t) Takajama H; Kitajima M; Wongseripipatana S; Sakai S-IJ Chem. Soc., Perkin Trans 1 1989, 1075. [Google Scholar]; (u) Takayama H; Odaka H; Aimi N; Sakai S-I Tetrahedron Lett. 1990, 31, 5483. [Google Scholar]; (v) Mahboobi S; Wagner W; Burgemeister T; Wiegrebe W Arch. Pharm 1994, 327, 463. [Google Scholar]; (w) Fernàndez J-C; Valls N; Bosch J; Bonjoch JJ Chem. Soc., Chem. Commun 1995, 2317. [Google Scholar]; (x) Bonjoch J; Fernàndez J-C; Valls NJ Org. Chem 1998, 63, 7338. [DOI] [PubMed] [Google Scholar]; (y) Magnus P; Gazzard L; Hobson L; Payne AH; Lynch V Tetrahedron Lett. 1999, 40, 5135. [Google Scholar]; (z) Magnus P; Gazzard L; Hobson L; Payne AH; Rainey TJ; Westlund N; Lynch V Tetrahedron 2002, 58, 3423. [Google Scholar]; (aa) Kim Y; Heo J; Kim D; Chang S; Seo S Nat. Commun 2020, 11, 4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (3).(a) Takayama H; Tominaga Y; Kitajima M; Aimi N; Sakai S-IJ Org. Chem 1994, 59, 4381. [Google Scholar]; (b) Mahboobi S; Wagner W; Burgemeister T Arch. Pharm 1995, 328, 371. [DOI] [PubMed] [Google Scholar]; (c) Sattely ES; Meek SJ; Malcolmson SJ; Schrock RR; Hoveyda AH J. Am. Chem. Soc 2009, 131, 943. [DOI] [PMC free article] [PubMed] [Google Scholar]; (d) Fokas D; Wang Z Synth. Commun 2008, 38, 3816. [Google Scholar]; (e) Fokas D; Kaselj M; Isome Y; Wang Z ACS Comb. Sci 2013, 15, 49. [DOI] [PubMed] [Google Scholar]; (f) Fokas D; Hamzik JA Synlett 2009, 581. [Google Scholar]; (g) Magnus P; Ladlow M; Elliott J; Kim CSJ Chem. Soc., Chem. Commun 1989, 518. [Google Scholar]; (h) Magnus P; Mendoza JS; Stamford A; Ladlow M; Willis PJ Am. Chem. Soc 1992, 114, 10232. [Google Scholar]; (i) Magnus P; Stamford A; Ladlow MJ Am. Chem. Soc 1990, 112, 8210. [Google Scholar]; (j) Magnus P; Mendoza J Tetrahedron Lett. 1992, 33, 899. [Google Scholar]; (k) Yang J; Rallapalli SK; Cook JM Tetrahedron Lett. 2010, 51, 815. [Google Scholar]; (l) Rannoux C; Roussi F; Martin M-T; Guéritte F Org. Biomol. Chem 2011, 9, 4873. [DOI] [PubMed] [Google Scholar]; (m) Kitajima M; Watanabe K; Maeda H; Kogure N; Takayama H Org. Lett 2016, 18, 1912. [DOI] [PubMed] [Google Scholar]; (n) Yang Z; Tan Q; Jiang Y; Yang J; Su X; Qiao Z; Zhou W; He L; Qiu H; Zhang M Angew. Chem. Int. Ed 2021, 60, 13105. [DOI] [PubMed] [Google Scholar]; (o) Li W; Wang Y; Qi H; Shi R; Li J; Chen S; Xu X-M; Wang W-L Org. Biomol. Chem 2021, 19, 8086. [DOI] [PubMed] [Google Scholar]
  • (4).(a) Albright JD; Goldmon LJ Am. Chem. Soc 1969, 91, 4317. [Google Scholar]; (b) Lampe-Tirions M; Kaisin M; Pecher J Bull. Soc. Chim. Belg 1971, 80, 27. [Google Scholar]; (c) Costa G; Riche C; Husson H-P Tetrahedron 1977, 33, 315. [Google Scholar]; (d) Kutney JP; Eigendorf GK; Matsue H; Murai A; Tanaka K; Sung WL; Wada K; Worth BR J. Am. Chem. Soc 1978, 100, 938. [Google Scholar]; (e) Sakai S-I; Shinma N Heterocycles 1976, 4, 985. [Google Scholar]; (f) Sakai S-I; Yamamoto Y; Hasegawa S Chem. Pharm. Bull 1980, 28, 3454. [Google Scholar]; (g) Sakai S-I; Yamamoto Y; Hasegawa S Heterocycles 1980, 14, 85. [Google Scholar]; (h) Wan ASC; Yokota M; Ogata K; Aimi N; Sakai S-I Heterocycles 1987, 26, 1211. [Google Scholar]; (i) Koike T; Takayama H; Sakai S-I Chem. Pharm. Bull 1991, 39, 1677. [Google Scholar]
  • (5).(a) Banerji A; Siddhanta AK J. Indian Chem. Soc 1982, 59, 542. [Google Scholar]; (b) Takayama H; Horigome M; Aimi N; Sakai S-I Tetrahedron Lett. 1990, 31, 1287. [Google Scholar]; (c) Paciaroni NG; Ratnayake R; Matthew JH; Norwood VM; Arnold AC; Dang LH; Luesch H; Huigens RH III Chem. Eur. J 2017, 23, 4327. [DOI] [PMC free article] [PubMed] [Google Scholar]; (d) Norwood VM; Brice-Tutt AC; Eans SO; Stacy HM; Shi G; Ratnayake R; Rocca JR; Abboud KA; Li C; Luesch H; McLaughlin JP; Huigens RH III J. Med. Chem 2020, 63, 5119. [DOI] [PMC free article] [PubMed] [Google Scholar]; (e) Srinivasulu V; Srikanth G; Khanfar MA; Abu-Yousef IA; Majdalawieh AF; Mazitschek R; Setty SC; Sebastian A; Al-Tel TH J. Org. Chem 2022, 87, 1377. [DOI] [PubMed] [Google Scholar]
  • (6).(a) Wenkert E; Garratt S; Dave KG Can. J. Chem 1964, 42, 489. [Google Scholar]; (b) Herbst D; Rees R; Hughes GA; Smith HJ Med. Chem 1966, 9, 864. [DOI] [PubMed] [Google Scholar]; (c) Kutney JP; Abdurahman N; Le Quesne P; Piers E; Vlattas IJ Am. Chem. Soc 1966, 88, 3656. [DOI] [PubMed] [Google Scholar]; (d) Kutney JP; Cretney WJ; Le Quesne P; McKague B; Piers EJ Am. Chem. Soc 1966, 88, 4756. [DOI] [PubMed] [Google Scholar]; (e) Harley-Mason J; Atta-ur-Rahman; Beisler JA. Chem. Commun 1966, 743. [Google Scholar]; (f) Dolby L; Gribble GJ Org. Chem 1967, 32, 1391. [Google Scholar]; (g) Takano S; Hirama M; Ogasawara KJ Org. Chem 1980, 45, 3729. [Google Scholar]; (h) Döé de Maindreville M; Lévy J Bull. Soc. Chim. Fr 1981, 2, 179. [Google Scholar]; (i) Wenkert E; Halls TDJ; Kwart LD; Magnusson G; Showalter HD H. Tetrahedron 1981, 37, 4017. [Google Scholar]; (j) Takano S; Hirama M; Ogasawara K Tetrahedron Lett. 1982, 23, 881. [Google Scholar]; (k) Kalaus G; Malkieh N; Katona I; Kajtar-Peredy M; Koritsanszky T; Kalman A; Szabo L; Szántay CJ Org. Chem 1985, 50, 3760. [Google Scholar]; (l) Abadi AH; Lankow S; Hoefgen B; Decker M; Kassack MU; Lehmann J Arch. Pharm 2002, 335, 367. [DOI] [PubMed] [Google Scholar]; (m) Robaa D; Enzensperger C; AbdulAzm SE; Hefnawy MM; El-Subbagh HI; Wani TA; Lehmann JJ Med. Chem 2011, 54, 7422. [DOI] [PubMed] [Google Scholar]; (n) Kutney JP; Abdurahman N; Gletsos C; Le Quesne P; Piers E; Vlattas IJ Am. Chem. Soc 1970, 92, 1727. [DOI] [PubMed] [Google Scholar]; (o) Takano S; Chiba K; Yonaga M; Ogasawara KJ Chem. Soc., Chem. Commun 1980, 616. [Google Scholar]; (p) Atta-ur-Rahman; Beisler JA; Harley-Mason J Tetrahedron 1980, 36, 1063. [Google Scholar]; (q) Takano S; Yonaga M; Chiba K; Ogasawara K Tetrahedron Lett. 1980, 21, 3697. [Google Scholar]; (r) Takano S; Uchida W; Hatakeyama S; Ogasawara K Chem. Lett 1982, 11, 733. [Google Scholar]; (s) Node M; Nagasawa H; Fuji KJ Am. Chem. Soc 1987, 109, 7901. [Google Scholar]; (t) Node M; Nagasawa H; Fuji KJ Org. Chem 1990, 55, 517. [Google Scholar]; (u) Temme O; Taj S-A; Andersson PG J. Org. Chem 1998, 63, 6007. [DOI] [PubMed] [Google Scholar]; (v) Witt T; Hock FJ; Lehmann JJ Med. Chem 2000, 43, 2079. [DOI] [PubMed] [Google Scholar]; (w) Rostom SA; Farghaly AM; Soliman FS; el-Semary MM; Elz S; Lehmann J Arch. Pharm 2001, 334, 241. [DOI] [PubMed] [Google Scholar]; (x) Kanada RM; Ogasawara K Tetrahedron Lett. 2001, 42, 7311. [Google Scholar]; (y) Kobayashi J; Sekiguchi M; Shimamoto S; Shigemori H; Ishiyama H; Ohsaki AJ Org. Chem 2002, 67, 6449. [DOI] [PubMed] [Google Scholar]; (z) Hoefgen B; Decker M; Mohr P; Schramm AM; Rostom SAF; El-Subbagh H; Schweikert PM; Rudolf DR; Kassack MU; Lehmann JJ Med. Chem 2006, 49, 760. [DOI] [PubMed] [Google Scholar]; (aa) Enzensperger C; Kilian S; Ackermann M; Koch A; Kelch K; Lehmann J Bioorg. Med. Chem. Lett 2007, 17, 1399. [DOI] [PubMed] [Google Scholar]; (ab) Robaa D; Kretschmer R; Siol O; Abulazm SE; Elkhawass E; Lehmann J; Enzensperger C Arch. Pharm 2010, 344, 28. [DOI] [PubMed] [Google Scholar]
  • (7).(a) Voskressensky LG; Borisova TN; Titov AA; Listratova AV; Kulikova LN; Varlamov AV; Khrustalev VN; Aleksandrov GG Russ. Chem. Bull 2012, 61, 1231. [Google Scholar]; (b) Voskressensky LG; Borisova TN; Kulikova LN; Varlamov AV; Catto M; Altomare C; Caroti A Eur. J. Org. Chem 2004, 2004, 3128. [Google Scholar]; (c) Voskressensky LG; Borisova TN; Kulikova LN; Doglova EG; Kleimenov AI; Sorokina EA; Titov AA; Varlamov AV Chem. Heterocycl. Compd 2007, 43, 587. [Google Scholar]; (d) Zhang L; Chang L; Hu H; Wang H; Yao Z-J; Wang S Chem. Eur. J 2014, 20, 2925. [DOI] [PubMed] [Google Scholar]; (e) Harley-Mason J; Atta-ur-Rahman Chem. Commun 1967, 208. [Google Scholar]; (f) Takano S; Murakata C; Ogasawara K Heterocycles 1980, 14, 1301. [Google Scholar]; (g) Lim H; Seong S; Kim Y; Seo S; Han SJ Am. Chem. Soc 2021, 143, 19966. [DOI] [PubMed] [Google Scholar]; (h) Bailey PD; Hollinshead SP Tetrahedron Lett. 1987, 28, 2879. [Google Scholar]; (i) Royer D; Yu YL; Hugel G; Lévy J Tetrahedron 1998, 54, 6507. [Google Scholar]
  • (8).(a) Movassaghi M; Schmidt MA; Ashenhurst JA Org. Lett 2008, 10, 4009. [DOI] [PubMed] [Google Scholar]; (b) Trost BM; Brennan MK Synthesis 2009, 3003. [Google Scholar]; (c) Kaur M; Singh M; Chadha N; Silakari O Eur. J. Med. Chem 2016, 123, 858. [DOI] [PubMed] [Google Scholar]; (d) Mahadu YM; Shivani M; Murugesan S; Kondapalli VG; Sekhar C Biomed. Pharmacother 2021, 141, 111842. [DOI] [PubMed] [Google Scholar]; (e) Boddy AJ; Bull JA Org. Chem. Front 2021, 8, 1026. [Google Scholar]
  • (9).(a) Wenkert E; Bindra JS; Chang C-J; Cochran DW; Schell FM Acc. Chem. Res 1974, 7, 46. [Google Scholar]; (b) Kuntiyong P; Inprung N; Phakdeeyothin K; Buaphan A; Thammapichai K Tetrahedron 2020, 76, 131261. [Google Scholar]; (c) Bian Z-G; Marvin CC; Martin SF J. Am. Chem. Soc 2013, 135, 10886. [DOI] [PMC free article] [PubMed] [Google Scholar]; (d) Chen P; Yang H; Zhang H; Chen W; Zhang Z; Zhang J; Li H; Wang X; Xie X; She X Org. Lett 2020, 22, 2022. [DOI] [PubMed] [Google Scholar]; (e) Edmondson S; Danishefsky SJ; Sepp-Lorenzino L; Rosen NJ Am. Chem. Soc 1999, 121, 2147. [Google Scholar]; (f) Xu J; Liang L; Zheng H; Chi YR; Tong R Nat. Commun 2019, 10, 4754. [DOI] [PMC free article] [PubMed] [Google Scholar]; (g) Qian C; Li P; Sun J Angew. Chem. Int. Ed 2021, 60, 5871. [DOI] [PubMed] [Google Scholar]; (h) Martin SF; Mortimore M Tetrahedron Lett. 1990, 31, 4557. [Google Scholar]; (i) Mercado-Marin EV; Garcia-Reynaga P; Romminger S; Pimenta EF; Romney DK; Lodewyk MW; Williams DE; Andersen RJ; Miller SJ; Tantillo DJ; Berlinck RGS; Sarpong R Nature 2014, 509, 318. [DOI] [PMC free article] [PubMed] [Google Scholar]; (j) Finch N; Gemenden CW; Hsu IH-C; Taylor WI J. Am. Chem. Soc 1963, 85, 1520. [DOI] [PubMed] [Google Scholar]
  • (10).(a) Zhao G; Xie X; Sun H; Yuan Z; Zhong Z; Tang S; She X Org. Lett 2016, 18, 2447. [DOI] [PubMed] [Google Scholar]; (b) Stahl R; Borschberg H-J Helv. Chim. Acta 1994, 77, 1331. [Google Scholar]; (c) Finch N; Gemenden CW; Hsu IH-C; Kerr A; Sim GA; Taylor WI J. Am. Chem. Soc 1965, 87, 2229. [DOI] [PubMed] [Google Scholar]; (d) Phillipson JD; Hemingway SR Phytochemistry 1975, 8, 1855. [Google Scholar]; (e) Váradi A; Marrone GF; Palmer TC; Narayan A; Szabó MR; Le Rouzic V; Grinnell SG; Subrath JJ; Warner E; Kalra S; Hunkele A; Pagirsky J; Eans SO; Medina JM; Xu J; Pan YX; Borics A; Pasternak GW; McLaughlin JP; Majumdar SJ Med. Chem 2016, 59, 8381. [DOI] [PMC free article] [PubMed] [Google Scholar]; (f) Takayama H; Ishikawa H; Kurihara M; Kitajima M; Aimi N; Ponglux D; Koyama F; Matsumoto K; Moriyama T; Yamamoto LT; Watanabe K; Murayama T; Horie SJ Med. Chem 2002, 45, 1949. [DOI] [PubMed] [Google Scholar]; (g) Kamble SH; León F; King TI; Berthold EC; Lopera-Londoño C; Siva Rama Raju K; Hampson AJ; Sharma A; Avery BA; McMahon LR; McCurdy CR ACS Pharmacol. Transl. Sci 2020, 3, 1063. [DOI] [PMC free article] [PubMed] [Google Scholar]; (h) Keglevich A; Mayer S; Pápai R; Szigetvári Á; Sánta Z; Dékány M; Szántay C Jr.; Keglevich P; Hazai L Molecules 2018, 23, 2574. [DOI] [PMC free article] [PubMed] [Google Scholar]; (i) Drathen TV; Hoffman F; Brasholz M Chem. Eur. J 2018, 24, 10253. [DOI] [PubMed] [Google Scholar]; (j) Su Y; Huang G; Ye F; Qiao P; Ye J; Gao Y; Chen H Org. Biomol. Chem 2019, 17, 8811. [DOI] [PubMed] [Google Scholar]
  • (11).(a) Witkop B; James B; Patrick JB; Rosenblum MJ J. Am. Chem. Soc 1951, 73, 2641. [Google Scholar]; (b) Witkop B; Goodwin SJ Am. Chem. Soc 1953, 75, 3371. [Google Scholar]; (c) Janot M-M; Goutarel R; Le Hir A; Tsatsasa G; Prelog V Helv. Chim. Acta 1955, 38, 1073. [Google Scholar]; (d) Winterfeldt E Liebigs Ann. Chem 1971, 745, 23. [Google Scholar]; (e) Nakagawa M; Matsuki K; Hasegawa K; Hino TJ Chem. Soc., Chem. Commun 1982, 742. [Google Scholar]; (f) Carniaux JF; Kan-Fan C; Royer J; Husson HP Tetrahedron Lett. 1997, 38, 2997. [Google Scholar]; (g) Jiang W; Alford VC; Qiu Y; Bhattacharjee S; John TW; Haynes-Johnson D; Kraft PJ; Lundeen SG; Sui Z Bioorg. Med. Chem 2004, 12, 1505. [DOI] [PubMed] [Google Scholar]; (h) Pin F; Comesse S; Daïch A Tetrahedron 2011, 27, 5564. [Google Scholar]; (i) Lancefield CS; Zhou L; Lébl T; Slawin AMZ; Westwood NJ Org. Lett 2012, 14, 6166. [DOI] [PubMed] [Google Scholar]; (j) Roxburgh CJ. Tetrahedron 1993, 49, 10749. [Google Scholar]; (k) Mental M; Breinbauer R Curr. Org. Chem 2007, 11, 159. [Google Scholar]; (l) Tratrat C; Giorgi-Renault S; Husson HP Synlett 1998, 1071. [Google Scholar]; (m) Sigaut F; Didierdefresse B; Lévy J Tetrahedron 2000, 56, 9641. [Google Scholar]; (n) Afsah EM; Fadda AA; Bondock S; Hammouda MM Z. Naturforsch 2009, 64b, 415. [Google Scholar]; (o) Mentel M; Peters M; Albering J; Breinbauer R Tetrahedron 2011, 67, 965. [Google Scholar]; (p) Liu S; Scott JS; Kozmin SA J. Org. Chem 2013, 78, 8645. [DOI] [PMC free article] [PubMed] [Google Scholar]; (q) Yang Y; Bai Y; Sun S; Dai M Org. Lett 2014, 16, 6216. [DOI] [PMC free article] [PubMed] [Google Scholar]; (r) Wu K; Fang C; Kaur S; Liu P; Wang T Synthesis 2018, 50, 2897. [Google Scholar]; (s) Leas DA; Dong Y; Garrison J; Wang X; Ezell E; Stack DE; Vennerstrom JL J. Org. Chem 2020, 85, 2846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (12).(a) Lachkar D; Denizot N; Bernadat G; Ahamada K; Beniddir MA; Dumontet V; Gallard J-F; Guillot R; Leblanc K; N’nang EO; Turpin V; Kouklovsky C; Poupon E; Evanno L; Vincent G Nat. Chem 2017, 9, 793. [DOI] [PubMed] [Google Scholar]; (b) Takayama H; Misawa K; Okada N; Ishikawa H; Kitajima M; Hatori Y; Murayama T; Wongseripipatana S; Tashima K; Matsumoto K; Horie S Org Lett. 2006, 8, 5705. [DOI] [PubMed] [Google Scholar]; (c) Ryckaert B; Hullaert J; Van Hecke K; Winne JM Org. Lett 2022, 24, 4119. [DOI] [PubMed] [Google Scholar]
  • (13).(a) Randriambola L; Quirion J-C; Kan-Fan C; Husson H-P Tetrahedron 1987, 28, 2123. [Google Scholar]; (b) Kalaus G; Malkieh N; Kajtár-Peredy M; Brlik J; Szabó L; Szántay C Heterocycles 1988, 27, 1179. [Google Scholar]; (c) Honty K; Szánty C; Kolonits P; Demeter A; Szántay C Tetrahedron 1993, 49, 10421. [Google Scholar]; (d) Nemes A; Szántay C Jr.; Czibula L; Greiner I Heterocycles 2007, 11, 2347. [Google Scholar]; (e) Woods JR; Riofski MV; Zheng MM; O’Banion MA; Mo H; Kirshner J; Colby DA Bioorg. Med. Chem. Lett 2013, 23, 5865. [DOI] [PMC free article] [PubMed] [Google Scholar]; (f) Ma Y-H; Ge S-W; Wang W; Sun BW J. Mol. Struct 2015, 1097, 87. [Google Scholar]
  • (14).(a) Norwood VM; Murillo-Solano C; Goertzen MG; Brummel BR; Perry DL; Rocca JR; Chakrabarti D; Huigens RH III ACS Omega 2021, 6, 20455. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Paciaroni NG; Perry DL; Norwood VM; Solano CM; Huigens RH III ACS Infect. Dis 2020, 6, 159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (15).(a) Gaskell AJ; Joule JA Tetrahedron 1968, 24, 5115. [DOI] [PubMed] [Google Scholar]; (b) Sakai SI; Ogawa M Chem. Pharm. Bull 1978, 26, 678. [Google Scholar]; (c) Ross SP; Hoye TR Nat. Chem 2017, 9, 523. [DOI] [PMC free article] [PubMed] [Google Scholar]; (d) Mukaiyama T; Narasaka K; Hokonok HJ Am. Chem. Soc 1969, 91, 4317. [Google Scholar]
  • (16).(a) Beatty JW; Stephenson CRJ J. Am. Chem. Soc 2014, 136, 10270. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Gotoh H; Sears JE; Eschenmoser A; Boger DL J. Am. Chem. Soc 2012, 134, 13240. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Seong S; Lim H; Han S Chem 2019, 5, 353. [Google Scholar]
  • (17).(a) Chen H; Ye F; Luo J; Gao Y Org. Lett 2019, 21, 7475. [DOI] [PubMed] [Google Scholar]; (b) Guo W; Wang X; Zhang J; Zhang T; Lv H; Zhao C Chem. Biol. Drug Des 2022, 99, 535. [DOI] [PubMed] [Google Scholar]; (c) Jiang J; Hu C Molecules 2009, 14, 1852. [DOI] [PMC free article] [PubMed] [Google Scholar]; (d) Dong G; Wang S; Miao Z; Yao J; Zhang Y; Guo Z; Zhang W; Sheng CJ Med. Chem 2012, 55, 7593. [DOI] [PubMed] [Google Scholar]; (e) Li ZG; Dong GQ; Wang SZ; Miao ZY; Yao JZ; Zhang WN; Sheng CQ Chin. Chem. Lett 2015, 26, 267. [Google Scholar]; (f) Koltai T Open Access J. Oncol. Med 2018, 1, 37. [Google Scholar]; (g) Hu X; Li D; Chu C; Li X; Wang X; Jia Y; Hua H; Xu F Int. J. Mol. Sci 2018, 19, 3403. [DOI] [PMC free article] [PubMed] [Google Scholar]; (h) Zhou P; Li XP; Jiang R; Chen Y; Lv XT; Guo XX; Tian K; Yuan DZ; Lv YW; Ran JH; Li J; Chen DL Anticancer Drugs 2019, 30, 611. [DOI] [PMC free article] [PubMed] [Google Scholar]; (i) Jiang ZB; Huang JM; Xie YJ; Zhang YZ; Chang C; Lai HL; Wang W; Yao XJ; Fan XX; Wu QB; Xie C; Wang MFJ Exp. Clin. Cancer Res 2020, 39, 249. [DOI] [PMC free article] [PubMed] [Google Scholar]; (j) Chen S; Bi K; Wu S; Li Y; Huang Y; Sheng C; Dong G Eur. J. Med. Chem 2021, 220, 113544. [DOI] [PubMed] [Google Scholar]; (k) Liang Y; Zhang H; Zhang X; Peng Y; Deng J; Wang Y; Li R; Liu L; Wang Z Bioorg. Chem 2022, 127, 105981. [DOI] [PubMed] [Google Scholar]

RESOURCES