Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 Oct;88(2):333–339. doi: 10.1104/pp.88.2.333

Oats Tolerant of Pseudomonas syringae pv. tabaci Contain Tabtoxinine-β-Lactam-Insensitive Leaf Glutamine Synthetases 1

Thomas J Knight 1, Daniel R Bush 1,2, Pat J Langston-Unkefer 1
PMCID: PMC1055577  PMID: 16666304

Abstract

Pseudomonas syringae pv. tabaci, a commonly recognized leaf pathogen of tobacco, can infest the rhizosphere of many plants, including oats. Normal oat plants do not survive this infestation as a consequence of the complete and irreversible inactivation of all of their glutamine synthetases by tabtoxinine-β-lactam (TβL), a toxin released by pv. tabaci. We have identified a population of oat (Avena sativa L. var Lodi) plants that are tolerant of pv. tabaci. The tolerant plants had no detectable TβL-detoxification mechanisms. Pathogen growth on these plant roots was not inhibited. These plants contain leaf glutamine synthetases (GS1 and GS2) that were less sensitive to inactivation by TβL in vitro; these GSs have normal Km values for glutamate and ATP when compared with those of GS in control plants. Root glutamine synthetase of the tolerant plants was inactivated in vivo during infestation by the pathogen or by TβL in vitro. When growing without pv. tabaci, the tolerant plants contained normal levels of glutamine synthetase in their roots and leaves and normal levels of protein, ammonia, glutamate, and glutamine in their leaves. However, when the tolerant plants' rhizosphere was infested with pv. tabaci, the plant leaves contained elevated levels of glutamine synthetase activity, protein, ammonia, glutamate, and glutamine. No changes in glutamate dehydrogenase activity were detected in leaves and roots of pathogen-infested tolerant plants.

Full text

PDF
333

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Bush D. R., Langston-Unkefer P. J. Tabtoxinine-beta-Lactam Transport into Cultured Corn Cells : Uptake via an Amino Acid Transport System. Plant Physiol. 1987 Nov;85(3):845–849. doi: 10.1104/pp.85.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dickson R. E., Vogelmann T. C., Larson P. R. Glutamine Transfer from Xylem to Phloem and Translocation to Developing Leaves of Populus deltoides. Plant Physiol. 1985 Feb;77(2):412–417. doi: 10.1104/pp.77.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Frantz T. A., Peterson D. M., Durbin R. D. Sources of ammonium in oat leaves treated with tabtoxin or methionine sulfoximine. Plant Physiol. 1982 Feb;69(2):345–348. doi: 10.1104/pp.69.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Knight T. J., Durbin R. D., Langston-Unkefer P. J. Effects of Tabtoxinine-beta-Lactam on Nitrogen Metabolism in Avena sativa L. Roots. Plant Physiol. 1986 Dec;82(4):1045–1050. doi: 10.1104/pp.82.4.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Knight T. J., Durbin R. D., Langston-Unkefer P. J. Role of glutamine synthetase adenylylation in the self-protection of Pseudomonas syringae subsp. "tabaci" from its toxin, tabtoxinine-beta-lactam. J Bacteriol. 1986 Apr;166(1):224–229. doi: 10.1128/jb.166.1.224-229.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Knight T. J., Durbin R. D., Langston-Unkefer P. J. Self-protection of Pseudomonas syringae pv. "tabaci" from its toxin, tabtoxinine-beta-lactam. J Bacteriol. 1987 May;169(5):1954–1959. doi: 10.1128/jb.169.5.1954-1959.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krogmann D. W., Jagendorf A. T., Avron M. Uncouplers of Spinach Chloroplast Photosynthetic Phosphorylation. Plant Physiol. 1959 May;34(3):272–277. doi: 10.1104/pp.34.3.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Langston-Unkefer P. J., Robinson A. C., Knight T. J., Durbin R. D. Inactivation of pea seed glutamine synthetase by the toxin, tabtoxinine-beta-lactam. J Biol Chem. 1987 Feb 5;262(4):1608–1613. [PubMed] [Google Scholar]
  10. Langston-Unkefer P. L., Macy P. A., Durbin R. D. Inactivation of Glutamine Synthetase by Tabtoxinine-beta-lactam : Effects of Substrates and pH. Plant Physiol. 1984 Sep;76(1):71–74. doi: 10.1104/pp.76.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lea P. J., Miflin B. J. Alternative route for nitrogen assimilation in higher plants. Nature. 1974 Oct 18;251(5476):614–616. doi: 10.1038/251614a0. [DOI] [PubMed] [Google Scholar]
  12. McNally S. F., Hirel B., Gadal P., Mann A. F., Stewart G. R. Glutamine Synthetases of Higher Plants : Evidence for a Specific Isoform Content Related to Their Possible Physiological Role and Their Compartmentation within the Leaf. Plant Physiol. 1983 May;72(1):22–25. doi: 10.1104/pp.72.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Puritch G. S., Barker A. V. Structure and function of tomato leaf chloroplasts during ammonium toxicity. Plant Physiol. 1967 Sep;42(9):1229–1238. doi: 10.1104/pp.42.9.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sands D. C., Rovira A. D. Isolation of fluorescent pseudomonads with a selective medium. Appl Microbiol. 1970 Sep;20(3):513–514. doi: 10.1128/am.20.3.513-514.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stewart W. W. Isolation and proof of structure of wildfire toxin. Nature. 1971 Jan 15;229(5281):174–178. doi: 10.1038/229174a0. [DOI] [PubMed] [Google Scholar]
  16. WOOLLEY D. W., SCHAFFNER G., BRAUN A. C. Studies on the structure of the phytopathogenic toxin of Pseudomonas tabaci. J Biol Chem. 1955 Aug;215(2):485–493. [PubMed] [Google Scholar]
  17. Weissman G. S. Influence of ammonium and nitrate nutrition on enzymatic activity in soybean and sunflower. Plant Physiol. 1972 Feb;49(2):138–141. doi: 10.1104/pp.49.2.138. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES