Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 Oct;88(2):383–388. doi: 10.1104/pp.88.2.383

Expression of Leaf Nitrate Reductase Genes from Tomato and Tobacco in Relation to Light-Dark Regimes and Nitrate Supply

Fabienne Galangau 1,2, Françoise Daniel-Vedele 1,2, Thérèse Moureaux 1,2, Marie-France Dorbe 1,2, Marie-Thérèse Leydecker 1,2, Michel Caboche 1,2
PMCID: PMC1055586  PMID: 16666313

Abstract

The influence of light-dark cycles and nitrate supply on nitrate reductase (NR) mRNA levels was studied in two plant species, tobacco (Nicotiana tabacum) and tomato (Lycopersicon esculentum) using specific NR DNA probes. In the same series of experiments, changes in the levels of NR protein (NRP) by enzyme-linked immunosorbent assay and changes in the level of NADH-nitrate reductase activity (NRA) were also followed. During a light-dark cycle, it was found that in both tomato and tobacco, NR mRNA accumulation increased rapidly during the dark period and reached a maximum at the beginning of the day, while NRP reached a peak 2 and 4 hours after mRNA peaked, for tomato and tobacco, respectively. At the end of the day, the amount of mRNA was decreased by a factor of at least 100 compared to sunrise in both species. These results demonstrate that light is involved, although probably not directly, in the regulation of the NR gene expression at the mRNA level. The peak of NRA in tobacco coincided with the peak in NR mRNA accumulation (i.e. sunrise), whereas in tomato the peak of NRA was approximately 5 to 6 hours after sunrise. There is no obvious correlation between NRP and NRA levels during the day. In nitrogen starvation experiments, a rapid decrease of NRP and NRA was detected, while NR mRNA levels were not significantly altered. Upon nitrate replenishment, nitrogen-starved plants accumulated NR mRNA rapidly. These results suggest that the availability of nitrogen affects the expression of NR activity at the transcriptional as well as at the post-transcriptional levels.

Full text

PDF
384

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Calza R, Huttner E, Vincentz M, Rouzé P, Galangau F, Vaucheret H, Chérel I, Meyer C, Kronenberger J, Caboche M. Cloning of DNA fragments complementary to tobacco nitrate reductase mRNA and encoding epitopes common to the nitrate reductases from higher plants. Mol Gen Genet. 1987 Oct;209(3):552–562. doi: 10.1007/BF00331162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng C. L., Dewdney J., Kleinhofs A., Goodman H. M. Cloning and nitrate induction of nitrate reductase mRNA. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6825–6828. doi: 10.1073/pnas.83.18.6825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cherel I., Marion-Poll A., Meyer C., Rouze P. Immunological comparisons of nitrate reductase of different plant species using monoclonal antibodies. Plant Physiol. 1986 Jun;81(2):376–378. doi: 10.1104/pp.81.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Crawford N. M., Campbell W. H., Davis R. W. Nitrate reductase from squash: cDNA cloning and nitrate regulation. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8073–8076. doi: 10.1073/pnas.83.21.8073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finley D., Ciechanover A., Varshavsky A. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell. 1984 May;37(1):43–55. doi: 10.1016/0092-8674(84)90299-x. [DOI] [PubMed] [Google Scholar]
  8. Remmler J. L., Campbell W. H. Regulation of Corn Leaf Nitrate Reductase : II. Synthesis and Turnover of the Enzyme's Activity and Protein. Plant Physiol. 1986 Feb;80(2):442–447. doi: 10.1104/pp.80.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sherrard J. H., Kennedy J. A., Dalling M. J. In Vitro Stability of Nitrate Reductase from Wheat Leaves: II. Isolation of Factors from Crude Extract Which Affect Stability of Highly Purified Nitrate Reductase. Plant Physiol. 1979 Sep;64(3):439–444. doi: 10.1104/pp.64.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Smarrelli J., Campbell W. H. Immunological approach to structural comparisons of assimilatory nitrate reductases. Plant Physiol. 1981 Dec;68(6):1226–1230. doi: 10.1104/pp.68.6.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Somers D. A., Kuo T. M., Kleinhofs A., Warner R. L., Oaks A. Synthesis and degradation of barley nitrate reductase. Plant Physiol. 1983 Aug;72(4):949–952. doi: 10.1104/pp.72.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wiborg O., Pedersen M. S., Wind A., Berglund L. E., Marcker K. A., Vuust J. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 1985 Mar;4(3):755–759. doi: 10.1002/j.1460-2075.1985.tb03693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wray J. L., Filner P. Structural and functional relationships of enzyme activities induced by nitrate in barley. Biochem J. 1970 Oct;119(4):715–725. doi: 10.1042/bj1190715. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES