Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 Nov;88(3):780–784. doi: 10.1104/pp.88.3.780

Quantification of Indole-3-Acetic Acid in Dark-Grown Seedlings of the Diageotropica and Epinastic Mutants of Tomato (Lycopersicon esculentum Mill.) 1

David W Fujino 1,2,3,4, Scott J Nissen 1,2,3,4, A Daniel Jones 1,2,3,4, David W Burger 1,2,3,4, Kent J Bradford 1,2,3,4
PMCID: PMC1055660  PMID: 16666383

Abstract

Endogenous indoleacetic acid (IAA) levels were examined in 7-day-old, dark-grown tomato seedlings (Lycopersicon esculentum Mill. cv VFN8), and in two single-gene mutants, Epinastic and diageotropica. Gas chromatography-mass spectrometry was employed to quantify IAA using 13C6-[benzene ring]indoleacetic acid as internal standard. IAA concentrations ranged from 89 to 134 nanograms per gram dry weight and were not significantly different for the three genotypes. Ethylene over-production by dark-grown Epi seedlings is not likely to result from increased IAA. Assuming similar recovery percentages for each genotype, indole-3-ethanol, a purported storage form of IAA, was identified by GC-MS and found to be more prevalent in the parent tomato, VFN8, with only trace amounts observed in Epi. No IEt was detected by high performance liquid chromatography/fluorescence in dgt (detection limit >100 picograms).

Full text

PDF
781

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford K. J., Yang S. F. Stress-induced Ethylene Production in the Ethylene-requiring Tomato Mutant Diageotropica. Plant Physiol. 1980 Feb;65(2):327–330. doi: 10.1104/pp.65.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown H. M., Purves W. K. Indoleacetaldehyde Reductase of Cucumis sativus L: KINETIC PROPERTIES AND ROLE IN AUXIN BIOSYNTHESIS. Plant Physiol. 1980 Jan;65(1):107–113. doi: 10.1104/pp.65.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen J. D., Baldi B. G., Slovin J. P. C(6)-[benzene ring]-indole-3-acetic Acid: a new internal standard for quantitative mass spectral analysis of indole-3-acetic Acid in plants. Plant Physiol. 1986 Jan;80(1):14–19. doi: 10.1104/pp.80.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fujino D. W., Burger D. W., Yang S. F., Bradford K. J. Characterization of an Ethylene Overproducing Mutant of Tomato (Lycopersicon esculentum Mill. Cultivar VFN8). Plant Physiol. 1988 Nov;88(3):774–779. doi: 10.1104/pp.88.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kelly M. O., Bradford K. J. Insensitivity of the diageotropica tomato mutant to auxin. Plant Physiol. 1986 Nov;82(3):713–717. doi: 10.1104/pp.82.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Nissen S. J., Foley M. E. Euphorbia escula L. Root and Root Bud Indole-3-Acetic Acid Levels at Three Phenologic Stages. Plant Physiol. 1987 Jun;84(2):287–290. doi: 10.1104/pp.84.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rayle D. L., Purves W. K. Conversion of indole-3-ethanol to indole-3-acetic Acid in cucumber seedling shoots. Plant Physiol. 1967 Aug;42(8):1091–1093. doi: 10.1104/pp.42.8.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rayle D. L., Purves W. K. Isolation and identification of indole-3-ethanol (tryptophol) from cucumber seedlings. Plant Physiol. 1967 Apr;42(4):520–524. doi: 10.1104/pp.42.4.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wodzicki T. J., Abe H., Wodzicki A. B., Pharis R. P., Cohen J. D. Investigations on the Nature of the Auxin-Wave in the Cambial Region of Pine Stems : Validation of IAA as the Auxin Component by the Avena Coleoptile Curvature Assay and by Gas Chromatography-Mass Spectrometry-Selected Ion Monitoring. Plant Physiol. 1987 May;84(1):135–143. doi: 10.1104/pp.84.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Yu Y. B., Adams D. O., Yang S. F. Regulation of Auxin-induced Ethylene Production in Mung Bean Hypocotyls: Role of 1-Aminocyclopropane-1-Carboxylic Acid. Plant Physiol. 1979 Mar;63(3):589–590. doi: 10.1104/pp.63.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yu Y. B., Yang S. F. Auxin-induced Ethylene Production and Its Inhibition by Aminoethyoxyvinylglycine and Cobalt Ion. Plant Physiol. 1979 Dec;64(6):1074–1077. doi: 10.1104/pp.64.6.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zobel R. W. Some Physiological Characteristics of the Ethylene-requiring Tomato Mutant Diageotropica. Plant Physiol. 1973 Oct;52(4):385–389. doi: 10.1104/pp.52.4.385. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES