Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1988 Nov;88(3):947–952. doi: 10.1104/pp.88.3.947

Localization of Nitrogen-Assimilating Enzymes in the Chloroplast of Chlamydomonas reinhardtii1

Petra Fischer 1, Uwe Klein 1
PMCID: PMC1055687  PMID: 16666409

Abstract

The specific activities of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase were determined in intact protoplasts and intact chloroplasts from Chlamydomonas reinhardtii. After correction for contamination, the data were used to calculate the portion of each enzyme in the algal chloroplast. The chloroplast of C. reinhardtii contained all enzyme activities for nitrogen assimilation, except nitrate reductase, which could not be detected in this organelle. Glutamate synthase (NADH- and ferredoxin-dependent) and glutamate dehydrogenase were located exclusively in the chloroplast, while for nitrite reductase and glutamine synthetase an extraplastidic activity of about 20 and 60%, respectively, was measured. Cells grown on ammonium, instead of nitrate as nitrogen source, had a higher total cellular activity of the NADH-dependent glutamate synthase (+95%) and glutamate dehydrogenase (+33%) but less activity of glutamine synthetase (−10%). No activity of nitrate reductase could be detected in ammonium-grown cells. The distribution of nitrogen-assimilating enzymes among the chloroplast and the rest of the cell did not differ significantly between nitrate-grown and ammonium-grown cells. Only the plastidic portion of the glutamine synthetase increased to about 80% in cells grown on ammonium (compared to about 40% in cells grown on nitrate).

Full text

PDF
949

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crofts A. R. Amine uncoupling of energy transfer in chloroplasts. I. Relation to ammonium ion uptake. J Biol Chem. 1967 Jul 25;242(14):3352–3359. [PubMed] [Google Scholar]
  2. DEL CAMPO F. F., PANEQUE A., RAMIREZ J. M., LOSADA M. Nitrate reduction in the light by isolated chloroplasts. Biochim Biophys Acta. 1963 May 21;66:450–452. doi: 10.1016/0006-3002(63)91215-0. [DOI] [PubMed] [Google Scholar]
  3. Dalling M. J., Tolbert N. E., Hageman R. H. Intracellular location of nitrate reductase and nitrite reductase. I. Spinach and tobacco leaves. Biochim Biophys Acta. 1972 Dec 14;283(3):505–512. doi: 10.1016/0005-2728(72)90266-6. [DOI] [PubMed] [Google Scholar]
  4. Hodler M., Morgenthaler J. J., Eichenberger W., Grob E. C. The influence of light on the activity of nitrate reductase in synchronous cultures of Chlorella pyrenoidosa. FEBS Lett. 1972 Nov 15;28(1):19–21. doi: 10.1016/0014-5793(72)80666-5. [DOI] [PubMed] [Google Scholar]
  5. Klein U., Chen C., Gibbs M., Platt-Aloia K. A. Cellular Fractionation of Chlamydomonas reinhardii with Emphasis on the Isolation of the Chloroplast. Plant Physiol. 1983 Jun;72(2):481–487. doi: 10.1104/pp.72.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Klein U. Intracellular Carbon Partitioning in Chlamydomonas reinhardtii. Plant Physiol. 1987 Dec;85(4):892–897. doi: 10.1104/pp.85.4.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lacoste-Royal G., Gibbs S. P. Immunocytochemical Localization of Ribulose-1,5-Bisphosphate Carboxylase in the Pyrenoid and Thylakoid Region of the Chloroplast of Chlamydomonas reinhardtii. Plant Physiol. 1987 Mar;83(3):602–606. doi: 10.1104/pp.83.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lips S. H., Avissar Y. Plant-leaf microbodies as the intracellular site of nitrate reductase and nitrite reductase. Eur J Biochem. 1972 Aug 18;29(1):20–24. doi: 10.1111/j.1432-1033.1972.tb01952.x. [DOI] [PubMed] [Google Scholar]
  9. Lopez-Ruiz A., Verbelen J. P., Roldan J. M., Diez J. Nitrate reductase of green algae is located in the pyrenoid. Plant Physiol. 1985 Dec;79(4):1006–1010. doi: 10.1104/pp.79.4.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McNally S. F., Hirel B., Gadal P., Mann A. F., Stewart G. R. Glutamine Synthetases of Higher Plants : Evidence for a Specific Isoform Content Related to Their Possible Physiological Role and Their Compartmentation within the Leaf. Plant Physiol. 1983 May;72(1):22–25. doi: 10.1104/pp.72.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miflin B. J. The location of nitrite reductase and other enzymes related to amino Acid biosynthesis in the plastids of root and leaves. Plant Physiol. 1974 Oct;54(4):550–555. doi: 10.1104/pp.54.4.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Prunkard D. E., Bascomb N. F., Robinson R. W., Schmidt R. R. Evidence for Chloroplastic Localization of an Ammonium-Inducible Glutamate Dehydrogenase and Synthesis of Its Subunit from a Cytosolic Precursor-Protein in Chlorella sorokiniana. Plant Physiol. 1986 Jun;81(2):349–355. doi: 10.1104/pp.81.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ritenour G. L., Joy K. W., Bunning J., Hageman R. H. Intracellular localization of nitrate reductase, nitrite reductase, and glutamic Acid dehydrogenase in green leaf tissue. Plant Physiol. 1967 Feb;42(2):233–237. doi: 10.1104/pp.42.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schlösser U. G., Sachs H., Robinson D. G. Isolation of protoplasts by means of a "species-specific" autolysine in Chlamydomonas. Protoplasma. 1976;88(1):51–64. doi: 10.1007/BF01280359. [DOI] [PubMed] [Google Scholar]
  15. Suzuki A., Audet C., Oaks A. Influence of light on the ferredoxin-dependent glutamate synthase in maize leaves. Plant Physiol. 1987 Jul;84(3):578–581. doi: 10.1104/pp.84.3.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tischner R. Regulation of Glutamine Synthetase by Light and during Nitrogen Deficiency in Synchronous Chlorella sorokiniana. Plant Physiol. 1980 Nov;66(5):805–808. doi: 10.1104/pp.66.5.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vaughn K. C., Duke S. O. Histochemical localization of nitrate reductase. Histochemistry. 1981;72(2):191–198. doi: 10.1007/BF00517132. [DOI] [PubMed] [Google Scholar]
  18. Wallsgrove R. M., Lea P. J., Miflin B. J. Distribution of the Enzymes of Nitrogen Assimilation within the Pea Leaf Cell. Plant Physiol. 1979 Feb;63(2):232–236. doi: 10.1104/pp.63.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Woo K. C., Flügge U. I., Heldt H. W. A Two-Translocator Model for the Transport of 2-Oxoglutarate and Glutamate in Chloroplasts during Ammonia Assimilation in the Light. Plant Physiol. 1987 Jul;84(3):624–632. doi: 10.1104/pp.84.3.624. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES