Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Oct 5:2023.09.28.559609. [Version 3] doi: 10.1101/2023.09.28.559609

Microinterfaces in bicontinuous hydrogels guide rapid 3D cell migration

Karen L Xu, Nikolas di Caprio, Hooman Fallahi, Mohammad Dehgany, Matthew D Davidson, Brian CH Cheung, Lorielle Laforest, Mingming Wu, Vivek Shenoy, Lin Han, Robert L Mauck, Jason A Burdick
PMCID: PMC10557715  PMID: 37808836

Abstract

Cell migration is critical for tissue development and regeneration but requires extracellular environments that are conducive to motion. Cells may actively generate migratory routes in vivo by degrading or remodeling their environments or may instead utilize existing ECM microstructures or microtracks as innate pathways for migration. While hydrogels in general are valuable tools for probing the extracellular regulators of 3D migration, few have recapitulated these natural migration paths. Here, we developed a biopolymer-based (i.e., gelatin and hyaluronic acid) bicontinuous hydrogel system formed through controlled solution immiscibility whose continuous subdomains and high micro-interfacial surface area enabled rapid 3D migration, particularly when compared to homogeneous hydrogels. Migratory behavior was mesenchymal in nature and regulated by biochemical and biophysical signals from the hydrogel, which was shown across various cell types and physiologically relevant contexts (e.g., cell spheroids, ex vivo tissues, in vivo tissues). Our findings introduce a new design that leverages important local interfaces to guide rapid cell migration.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES