Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Jan;89(1):347–351. doi: 10.1104/pp.89.1.347

Light/Dark Profiles of Sucrose Phosphate Synthase, Sucrose Synthase, and Acid Invertase in Leaves of Sugar Beets

Terry L Vassey 1,1
PMCID: PMC1055842  PMID: 16666537

Abstract

The activity of sucrose phosphate synthase, sucrose synthase, and acid invertase was monitored in 1- to 2-month-old sugar beet (Beta vulgaris L.) leaves. Sugar beet leaves achieve full laminar length in 13 days. Therefore, leaves were harvested at 2-day intervals for 15 days. Sucrose phosphate synthase activity was not detectable for 6 days in the dark-grown leaves. Once activity was measurable, sucrose phosphate synthase activity never exceeded half that observed in the light-grown leaves. After 8 days in the dark, leaves which were illuminated for 30 minutes showed no significant change in sucrose phosphate synthase activity. Leaves illuminated for 24 hours after 8 days in darkness, however, recovered sucrose phosphate synthase activity to 80% of that of normally grown leaves. Sucrose synthase and acid invertase activity in the light-grown leaves both increased for the first 7 days and then decreased as the leaves matured. In contrast, the activity of sucrose synthase oscillated throughout the growth period in the dark-grown leaves. Acid invertase activity in the dark-grown leaves seemed to be the same as the activity found in the light-grown leaves.

Full text

PDF
347

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Doehlert D. C., Huber S. C. Regulation of Spinach Leaf Sucrose Phosphate Synthase by Glucose-6-Phosphate, Inorganic Phosphate, and pH. Plant Physiol. 1983 Dec;73(4):989–994. doi: 10.1104/pp.73.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. El-Sheikh A. M., Ulrich A., Broyer T. C. Sodium and rubidium as possible nutrients for sugar beet plants. Plant Physiol. 1967 Sep;42(9):1202–1208. doi: 10.1104/pp.42.9.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fellows R. J., Geiger D. R. Structural and Physiological Changes in Sugar Beet Leaves during Sink to Source Conversion. Plant Physiol. 1974 Dec;54(6):877–885. doi: 10.1104/pp.54.6.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giaquinta R. Source and sink leaf metabolism in relation to Phloem translocation: carbon partitioning and enzymology. Plant Physiol. 1978 Mar;61(3):380–385. doi: 10.1104/pp.61.3.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kerr P. S., Rufty T. W., Huber S. C. Endogenous Rhythms in Photosynthesis, Sucrose Phosphate Synthase Activity, and Stomatal Resistance in Leaves of Soybean (Glycine max [L.] Merr.). Plant Physiol. 1985 Feb;77(2):275–280. doi: 10.1104/pp.77.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mullen J. A., Koller H. R. Trends in carbohydrate depletion, respiratory carbon loss, and assimilate export from soybean leaves at night. Plant Physiol. 1988 Feb;86(2):517–521. doi: 10.1104/pp.86.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  9. Rufty T. W., Kerr P. S., Huber S. C. Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis. Plant Physiol. 1983 Oct;73(2):428–433. doi: 10.1104/pp.73.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schmalstig J. G., Hitz W. D. Contributions of sucrose synthase and invertase to the metabolism of sucrose in developing leaves : estimation by alternate substrate utilization. Plant Physiol. 1987 Oct;85(2):407–412. doi: 10.1104/pp.85.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sicher R. C., Kremer D. F. Changes of Sucrose-Phosphate Synthase Activity in Barley Primary Leaves during Light/Dark Transitions. Plant Physiol. 1984 Dec;76(4):910–912. doi: 10.1104/pp.76.4.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sicher R. C., Kremer D. F. Possible control of maize leaf sucrose-phosphate synthase activity by light modulation. Plant Physiol. 1985 Nov;79(3):695–698. doi: 10.1104/pp.79.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Van Handel E. Direct microdetermination of sucrose. Anal Biochem. 1968 Feb;22(2):280–283. doi: 10.1016/0003-2697(68)90317-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES