Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Mar;89(3):925–931. doi: 10.1104/pp.89.3.925

Host-Specific Effects of Toxin from the Rough Lemon Pathotype of Alternaria alternata on Mitochondria 1

Kazuya Akimitsu 1,2,2, Keisuke Kohmoto 1,2, Hiroshi Otani 1,2, Syoyo Nishimura 1,2
PMCID: PMC1055945  PMID: 16666643

Abstract

Host-specific toxin from the rough lemon (Citrus jambhiri Lush) pathotype of Alternaria alternata (ACR toxin) was tested for effects on mitochondria isolated from several citrus species. The toxin caused uncoupling of oxidative phosphorylation and changes in membrane potential in mitochondria from leaves of the susceptible host (rough lemon); the effects differed from those of carbonylcyanide-m-chlorophenylhydrazone, a typical protonophore. ACR toxin also inhibited malate oxidation, apparently because of lack of NAD+ in the matrix. In contrast, the toxin had no effect on mitochondria from citrus species (Dancy tangerine and Emperor mandarin [Citrus reticulata Blanco], and grapefruit [Citrus paradisi Macf.]) that are not hosts of the fungus. The effects of the toxin on mitochondria from rough lemon are similar to the effects of a host-specific toxin from Helminthosporium maydis (HMT) on mitochondria from T-cytoplasm maize. Both ACR and HMT toxins are highly selective for the respective host plants. HMT toxin and methomyl had no effect (toxic or protective) on the activity of ACR toxin against mitochondria from rough lemon.

Full text

PDF
931

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K, Armenteros R, Bacon TC, Ballam J, Bingham HH, Brau JE, Braune K, Brick D, Bugg WM, Butler JM. Inclusive photoproduction of strange baryons at 20 GeV. Phys Rev D Part Fields. 1985 Dec 1;32(11):2869–2882. doi: 10.1103/physrevd.32.2869. [DOI] [PubMed] [Google Scholar]
  2. Bednarski M. A., Izawa S., Scheffer R. P. Reversible Effects of Toxin from Helminthosporium maydis Race T on Oxidative Phosphorylation by Mitochondria from Maize. Plant Physiol. 1977 Apr;59(4):540–545. doi: 10.1104/pp.59.4.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bervillé A., Ghazi A., Charbonnier M., Bonavent J. F. Effects of Methomyl and Helminthosporium maydis Toxin on Matrix Volume, Proton Motive Force, and NAD Accumulation in Maize (Zea mays L.) Mitochondria. Plant Physiol. 1984 Oct;76(2):508–517. doi: 10.1104/pp.76.2.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boggess S. F., Koeppe D. E. Oxidation of proline by plant mitochondria. Plant Physiol. 1978 Jul;62(1):22–25. doi: 10.1104/pp.62.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowman E. J., Ikuma H., Stein H. J. Citric Acid cycle activity in mitochondria isolated from mung bean hypocotyls. Plant Physiol. 1976 Sep;58(3):426–432. doi: 10.1104/pp.58.3.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Craig D. W., Wedding R. T. Regulation of the 2-oxoglutarate dehydrogenase lipoate succinyltransferase complex from cauliflower by nucleotide. Steady state kinetic studies. J Biol Chem. 1980 Jun 25;255(12):5763–5768. [PubMed] [Google Scholar]
  8. Holden M. J., Sze H. Dissipation of the Membrane Potential in Susceptible Corn Mitochondria by the Toxin of Helminthosporium maydis, Race T, and Toxin Analogs. Plant Physiol. 1987 Jul;84(3):670–676. doi: 10.1104/pp.84.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Klein R. R., Koeppe D. E. Mode of Methomyl and Bipolaris maydis (race T) Toxin in Uncoupling Texas Male-Sterile Cytoplasm Corn Mitochondria. Plant Physiol. 1985 Apr;77(4):912–916. doi: 10.1104/pp.77.4.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Payne G., Kono Y., Daly J. M. A Comparison of Purified Host Specific Toxin from Helminthosporium maydis, Race T, and Its Acetate Derivative on Oxidation by Mitochondria from Susceptible and Resistant Plants. Plant Physiol. 1980 May;65(5):785–791. doi: 10.1104/pp.65.5.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schonbaum G. R., Bonner W. D., Jr, Storey B. T., Bahr J. T. Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiol. 1971 Jan;47(1):124–128. doi: 10.1104/pp.47.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Slater E. C. Mechanism of oxidative phosphorylation. Annu Rev Biochem. 1977;46:1015–1026. doi: 10.1146/annurev.bi.46.070177.005055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tobin A., Djerdjour B., Journet E., Neuburger M., Douce R. Effect of NAD on Malate Oxidation in Intact Plant Mitochondria. Plant Physiol. 1980 Aug;66(2):225–229. doi: 10.1104/pp.66.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yu C., Claybrook D. L., Huang A. H. Transport of glycine, serine, and proline into spinach leaf mitochondria. Arch Biochem Biophys. 1983 Nov;227(1):180–187. doi: 10.1016/0003-9861(83)90361-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES