Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Apr;89(4):1341–1344. doi: 10.1104/pp.89.4.1341

Susceptibility of UDP-Glucose:(1,3)-β-Glucan Synthase to Inactivation by Phospholipases and Trypsin 1

Margaret E Sloan 1,2, Bruce P Wasserman 1
PMCID: PMC1056019  PMID: 16666707

Abstract

UDP-glucose:(1,3)-β-glucan synthase from Beta vulgaris L. was rapidly inactivated by treatment with phospholipases C, D, and A2. Enzyme activity could not be restored to the phospholipase-treated enzyme by the addition of phosphatidylethanolamine or other phospholipids. Membrane-bound and solubilized glucan synthase were also trypsin-labile with inactivation rates equal in the presence or absence of divalent cations or chelators. Gradual activity declines were observed in membranes incubated with divalent cations, but not with chelators.

Full text

PDF
1341

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooker R. J., Slayman C. W. Effects of Mg2+ ions on the plasma membrane [H+]-ATPase of Neurospora crassa. I. Inhibition by N-ethylmaleimide and trypsin. J Biol Chem. 1983 Jul 25;258(14):8827–8832. [PubMed] [Google Scholar]
  2. Bureau T. E., Brown R. M. In vitro synthesis of cellulose II from a cytoplasmic membrane fraction of Acetobacter xylinum. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6985–6989. doi: 10.1073/pnas.84.20.6985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cabib E., Bowers B., Roberts R. L. Vectorial synthesis of a polysaccharide by isolated plasma membranes. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3318–3321. doi: 10.1073/pnas.80.11.3318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cabib E., Farkas V. The control of morphogenesis: an enzymatic mechanism for the initiation of septum formation in yeast. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2052–2056. doi: 10.1073/pnas.68.9.2052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Durán A., Bowers B., Cabib E. Chitin synthetase zymogen is attached to the yeast plasma membrane. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3952–3955. doi: 10.1073/pnas.72.10.3952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eiberger L. L., Wasserman B. P. Partial Purification of Digitonin-Solubilized beta-Glucan Synthase from Red Beet Root. Plant Physiol. 1987 Apr;83(4):982–987. doi: 10.1104/pp.83.4.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferguson M. A., Homans S. W., Dwek R. A., Rademacher T. W. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science. 1988 Feb 12;239(4841 Pt 1):753–759. doi: 10.1126/science.3340856. [DOI] [PubMed] [Google Scholar]
  8. Ferguson M. A., Williams A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
  9. Girard V., Maclachlan G. Modulation of Pea Membrane beta-Glucan Synthase Activity by Calcium, Polycation, Endogenous Protease, and Protease Inhibitor. Plant Physiol. 1987 Sep;85(1):131–136. doi: 10.1104/pp.85.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayashi T., Read S. M., Bussell J., Thelen M., Lin F. C., Brown R. M., Delmer D. P. UDP-Glucose: (1-->3)-beta-Glucan Synthases from Mung Bean and Cotton: Differential Effects of Ca and Mg on Enzyme Properties and on Macromolecular Structure of the Glucan Product. Plant Physiol. 1987 Apr;83(4):1054–1062. doi: 10.1104/pp.83.4.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kang M. S., Elango N., Mattia E., Au-Young J., Robbins P. W., Cabib E. Isolation of chitin synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the reaction product. J Biol Chem. 1984 Dec 10;259(23):14966–14972. [PubMed] [Google Scholar]
  12. Read S. M., Delmer D. P. Inhibition of Mung Bean UDP-Glucose: (1-->3)-beta-Glucan Synthase by UDP-Pyridoxal: Evidence for an Active-Site Amino Group. Plant Physiol. 1987 Dec;85(4):1008–1015. doi: 10.1104/pp.85.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sefton B. M., Buss J. E. The covalent modification of eukaryotic proteins with lipid. J Cell Biol. 1987 Jun;104(6):1449–1453. doi: 10.1083/jcb.104.6.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shematek E. M., Braatz J. A., Cabib E. Biosynthesis of the yeast cell wall. I. Preparation and properties of beta-(1 leads to 3)glucan synthetase. J Biol Chem. 1980 Feb 10;255(3):888–894. [PubMed] [Google Scholar]
  15. Sloan M. E., Rodis P., Wasserman B. P. CHAPS Solubilization and Functional Reconstitution of beta-Glucan Synthase from Red Beet Root (Beta vulgaris L.) Storage Tissue. Plant Physiol. 1987 Oct;85(2):516–522. doi: 10.1104/pp.85.2.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wasserman B. P., McCarthy K. J. Regulation of Plasma Membrane beta-Glucan Synthase from Red Beet Root by Phospholipids : Reactivation of Triton X-100 Extracted Glucan Synthase by Phospholipids. Plant Physiol. 1986 Oct;82(2):396–400. doi: 10.1104/pp.82.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES