Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1986 Nov;82(3):795–800. doi: 10.1104/pp.82.3.795

Distribution and Metabolism of sym-Homospermidine and Canavalmine in the Sword Bean Canavalia gladiata cv Shironata

Shinsuke Fujihara 1,2, Toshikatsu Nakashima 1,2, Yutaka Kurogochi 1,2, Masuro Yamaguchi 1,2
PMCID: PMC1056209  PMID: 16665112

Abstract

The unusual polyamines, sym-homospermidine (homoSPD) and canavalmine (CAN), were found in the seed of Canavalia species such as C. gladiata, C. ensiformis, and C. brasilensis, but not in those of other leguminous crops. To examine the distribution and metabolism of homoSPD and CAN in sword bean, C. gladiata cv Shironata, polyamine analysis was carried out throughout the life cycle of this plant. During seed germination, putrescine (PUT), spermidine (SPD), and spermine (SPM) were accumulated in the radicle and hypocotyl. HomoSPD and CAN were, however, maintained at very low levels over a 6-day period of germination. In nodulated sword bean plants, a large quantity of homoSPD was found in the root nodule. CAN was detected exclusively in the senescent nodule at very low concentrations. These polyamines were not detected in any other organs including root, stem, leaf, vine, flower, and pod, while PUT, SPD, and SPM were always found in those organs. As plants reached the reproductive stage, homoSPD and CAN appeared in the immature seed and their concentrations increased as seed formation progressed. By contrast, the level of SPM continuously decreased during seed development. In developing seeds, considerable accumulation of canavanine, an analog of arginine, which is a precursor in polyamine biosynthesis, was also observed.

Full text

PDF
795

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERGERSEN F. J. The bacterial component of soybean root nodules; changes in respiratory activity, cell dry weight and nucleic acid content with increasing nodule age. J Gen Microbiol. 1958 Oct;19(2):312–323. doi: 10.1099/00221287-19-2-312. [DOI] [PubMed] [Google Scholar]
  2. Dilworth M. J. The plant as the genetic determinant of leghaemoglobin production in the legume root nodule. Biochim Biophys Acta. 1969 Jul 30;184(2):432–441. doi: 10.1016/0304-4165(69)90047-6. [DOI] [PubMed] [Google Scholar]
  3. Fujihara S., Nakashima T., Kurogochi Y. Determination of polyamines in human blood by electron-capture gas-liquid chromatography. J Chromatogr. 1983 Oct 14;277:53–60. doi: 10.1016/s0378-4347(00)84822-7. [DOI] [PubMed] [Google Scholar]
  4. Fujihara S., Nakashima T., Kurogochi Y. Erythroid differentiation of cultured murine erythroleukemia cells by the spermine analogue canavalmine. Biochim Biophys Acta. 1985 Jul 30;846(1):101–108. doi: 10.1016/0167-4889(85)90115-6. [DOI] [PubMed] [Google Scholar]
  5. Fujihara S., Nakashima T., Kurogochi Y. Occurrence of a new polyamine, canavalmine, in the sword bean Canavalia gladiata. Biochem Biophys Res Commun. 1982 Jul 16;107(1):403–410. doi: 10.1016/0006-291x(82)91718-1. [DOI] [PubMed] [Google Scholar]
  6. Fujihara S., Yamaguchi M. Effects of Allopurinol [4-Hydroxypyrazolo(3,4-d)Pyrimidine] on the Metabolism of Allantoin in Soybean Plants. Plant Physiol. 1978 Jul;62(1):134–138. doi: 10.1104/pp.62.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hamana K., Kamekura M., Onishi H., Akazawa T., Matsuzaki S. Polyamines in photosynthetic eubacteria and extreme-halophilic archaebacteria. J Biochem. 1985 Jun;97(6):1653–1658. doi: 10.1093/oxfordjournals.jbchem.a135223. [DOI] [PubMed] [Google Scholar]
  8. Hamana K., Matsuzaki S. Further study on polyamines in primitive unicellular eukaryotic algae. J Biochem. 1985 May;97(5):1311–1315. doi: 10.1093/oxfordjournals.jbchem.a135182. [DOI] [PubMed] [Google Scholar]
  9. Hamana K., Matsuzaki S. Natural occurrence of guanidinooxypropylamine in Wistaria floribunda and the sword bean Canavalia gladiata. Biochem Biophys Res Commun. 1985 May 31;129(1):46–51. doi: 10.1016/0006-291x(85)91400-7. [DOI] [PubMed] [Google Scholar]
  10. Hamana K., Miyagawa K., Matsuzaki S. Occurrence of sym-homospermidine as the major polyamine in nitrogen-fixing cyanobacteria. Biochem Biophys Res Commun. 1983 Apr 29;112(2):606–613. doi: 10.1016/0006-291x(83)91507-3. [DOI] [PubMed] [Google Scholar]
  11. Kurabuchi S., Matsuzaki S., Inoue S. Changes in polyamine content during limb regeneration in adult Xenopus laevis. J Exp Zool. 1983 Jul;227(1):121–126. doi: 10.1002/jez.1402270116. [DOI] [PubMed] [Google Scholar]
  12. Kuttan R., Radhakrishnan A. N., Spande T., Witkop B. sym-Homospermidine, a naturally occurring polyamine. Biochemistry. 1971 Feb 2;10(3):361–365. doi: 10.1021/bi00779a001. [DOI] [PubMed] [Google Scholar]
  13. Lin P. P. Polyamine Anabolism in Germinating Glycine max (L.) Seeds : Dynamics of Cadaverine and Putrescine Formation in the Embryonic Axis. Plant Physiol. 1984 Oct;76(2):372–380. doi: 10.1104/pp.76.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matsuzaki S., Hamana K., Imai K., Matsuura K. Occurrence in high concentrations of N1-acetylspermidine and syn-homospermidine in the hamster epididymis. Biochem Biophys Res Commun. 1982 Jul 16;107(1):307–313. doi: 10.1016/0006-291x(82)91705-3. [DOI] [PubMed] [Google Scholar]
  15. Oshima T., Baba M. Occurrence of sym-homospermidine in extremely thermophilic bacteria. Biochem Biophys Res Commun. 1981 Nov 16;103(1):156–160. doi: 10.1016/0006-291x(81)91673-9. [DOI] [PubMed] [Google Scholar]
  16. Rolle I., Hobucher H-E, Kneifel H., Paschold B., Riepe W., Soeder C. J. Amines in unicellular green algae. 2. Amines in Scenedesmus acutus. Anal Biochem. 1977 Jan;77(1):103–109. doi: 10.1016/0003-2697(77)90294-9. [DOI] [PubMed] [Google Scholar]
  17. Slocum R. D., Kaur-Sawhney R., Galston A. W. The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys. 1984 Dec;235(2):283–303. doi: 10.1016/0003-9861(84)90201-7. [DOI] [PubMed] [Google Scholar]
  18. Srivenugopal K. S., Adiga P. R. Enzymic synthesis of sym-homospermidine in Lathyrus sativus (grass pea) seedlings. Biochem J. 1980 Aug 15;190(2):461–464. doi: 10.1042/bj1900461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tait G. H. The formation of homospermidine by an enzyme from Rhodopseudomonas viridis [proceedings]. Biochem Soc Trans. 1979 Feb;7(1):199–201. doi: 10.1042/bst0070199. [DOI] [PubMed] [Google Scholar]
  20. Wang L. C., Selke E. Soybean polyamines: separation and characterization of cadaverine. Plant Physiol. 1973 Mar;51(3):432–435. doi: 10.1104/pp.51.3.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Young N. D., Galston A. W. Are polyamines transported in etiolated peas? Plant Physiol. 1983 Dec;73(4):912–914. doi: 10.1104/pp.73.4.912. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES