Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Mar;83(3):472–474. doi: 10.1104/pp.83.3.472

Effect of Inorganic Orthophosphate on in Vitro Activity of NADH-Nitrate Reductase Isolated from 2-Row Barley Leaves

Yoshikiyo Oji 1, Yoshiki Ryoma 1, Nariaki Wakiuchi 1, Saburo Okamoto 1
PMCID: PMC1056388  PMID: 16665273

Abstract

Inorganic orthophosphate (25 millimolar in assay media; Pi) was found to increase in vitro activity of NADH-nitrate reductase (NR) isolated from 2-row barley (Hordeum vulgare L.) leaves with a saturating concentration of nitrate (2 millimolar) but to decrease it with low nitrate levels (<0.1 millimolar). The response to nitrate concentrations was Pi specific. The Lineweaver-Burk plot showed that Pi increases the apparent Km for nitrate as well as Vmax, whereas it does not alter the Km for NADH significantly. These results suggest that the interaction between a molybdenum site of the enzyme and Pi results in alteration of the properties of NR molecule.

Full text

PDF
474

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell W. H., Smarrelli J. Purification and Kinetics of Higher Plant NADH:Nitrate Reductase. Plant Physiol. 1978 Apr;61(4):611–616. doi: 10.1104/pp.61.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Howard W. D., Solomonson L. P. Kinetic mechanism of assimilatory NADH:nitrate reductase from Chlorella. J Biol Chem. 1981 Dec 25;256(24):12725–12730. [PubMed] [Google Scholar]
  3. KINSKY S. C., McELROY W. D. Neurospora nitrate reductase: the role of phosphate flavine and cytochrome c reductase. Arch Biochem Biophys. 1958 Feb;73(2):466–483. doi: 10.1016/0003-9861(58)90290-x. [DOI] [PubMed] [Google Scholar]
  4. Renosto F., Schmidt N. D., Segel I. H. Nitrate reductase from Penicillium chrysogenum: the reduced flavin-adenine dinucleotide-dependent reaction. Arch Biochem Biophys. 1982 Nov;219(1):12–20. doi: 10.1016/0003-9861(82)90128-x. [DOI] [PubMed] [Google Scholar]
  5. Sanderson G. W., Cocking E. C. Enzymic Assimilation of Nitrate in Tomato Plants. I. Reduction of Nitrate to Nitrite. Plant Physiol. 1964 May;39(3):416–422. doi: 10.1104/pp.39.3.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Senn D. R., Carr P. W., Klatt L. N. Minimization of a sodium dithionite-derived interference in nitrate reductase-methyl viologen reactions. Anal Biochem. 1976 Oct;75(2):464–471. doi: 10.1016/0003-2697(76)90101-9. [DOI] [PubMed] [Google Scholar]
  7. Solomonson L. P., Vennesland B. Properties of a nitrate reductase of Chlorella. Biochim Biophys Acta. 1972 Jun 23;267(3):544–557. doi: 10.1016/0005-2728(72)90183-1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES