Skip to main content
microPublication Biology logoLink to microPublication Biology
. 2023 Sep 26;2023:10.17912/micropub.biology.000957. doi: 10.17912/micropub.biology.000957

MET exon 14 skipping is overexpressed in an allele-specific manner in lung adenocarcinoma primary samples

Megan Durham 1, Swetha Vadde 1, Angela N Brooks 2,§
Reviewed by: Anonymous
PMCID: PMC10565573  PMID: 37829573

Abstract

MET exon 14 skipping ( METΔ14 ) is a well-characterized oncogene in the Ras-MAPK pathway driving lung adenocarcinoma (LUAD). Previous studies on METΔ14 revealed this aberrantly spliced oncogene is expressed in LUAD primary samples and is associated with heterozygous somatic mutations and deletions near exon 14 splice sites. Upon further examination of DNA and RNA sequencing data from primary samples, we highlight that METΔ14 is overexpressed in an allele-specific manner. These data suggest that dose-dependence of METΔ14 may be critical to oncogenesis.


Figure 1. Allele-specific overexpression of METΔ14 in Lung Adenocarcinoma primary samples .


Figure 1.

Allele-specific overexpression of
METΔ14
in Lung Adenocarcinoma primary samples

A) Oncoprint adapted from cBioPortal reveals genetic mutations in MET per LUAD TCGA primary sample. Arrows correspond to TCGA IDs in C from (Lu et al., 2017). Note not all splice mutations in MET are captured using the analysis from cBioPortal. High MET expression is relative to normal samples. B) Diagram describing how allelic imbalance was identified in TCGA DNA and matched RNA sequencing data. At the DNA level, lung adenocarcinoma tumors heterozygous for germline SNVs within the MET gene were identified and chosen for further analysis. These SNV locations were identified in matched RNA-seq data, and ratios of SNV to WT nucleotide determined if there is an allele-based expression of METΔ14 . C) Table summary of TCGA sample, SNV zygosity from DNA-seq data, allelic imbalance from RNA-seq data, and percent METΔ14 expression calculated with JuncBase results from (Soulette et al., 2023). D-K) Graphs representing the percentage of non-reference allele for heterozygous germline SNVs in TCGA primary samples from C. Genomic coordinates are relative to hg38. L) RT-PCR using primers spanning exon 14 of MET to validate METΔ14 mRNA in an overexpression AALE line (over. METΔ14) and CRISPR-generated AALE cells (CRISPR METΔ14). M) Western blot confirming activated and total MET in an overexpressed KRAS G12V AALE cell line (over. KRAS G12V), over. METΔ14 and CRISPR METΔ14. N) Growth in low attachment (GILA) cell viability assay of 3 biological replicates of over. KRAS G12V, over. METΔ14 and CRISPR METΔ14. Colors group four technical replicates. Comparisons performed with a Mann-Whitney test. Error bars represent standard deviation of the mean.

Description

MET is a tyrosine kinase receptor in the Ras-MAPK pathway whose unchecked signaling leads to cancer. This receptor is activated through binding of its ligand, HGF (Bottaro & Rubin, 1991) , and this signal is terminated through MET’s ubiquitination and degradation (Jeffers et al., 1997) . The negative regulatory region of MET is encoded by exon 14, and contains a binding site for the E3-ubiquitin ligase, Cbl, at position Y1003 within the cytoplasmic juxtamembrane domain (Peschard et al., 2001) . Phosphorylation of Y1003 permits Cbl binding, triggering MET’s ubiquitination and subsequent degradation (Peschard et al., 2001) . The inclusion of exon 14 is critical for MET’s regulation and mutations at or near exon 14 splice sites are associated with exon exclusion from the mature mRNA ( METΔ14 ) (Lu et al., 2017) . This exclusion results in a protein lacking the Cbl binding site, extending the protein's life span in the membrane, and prolonging proliferative signaling that drives cancer (Kong-Beltran et al., 2006; Lu et al., 2017; Ma et al., 2003, 2005) . These METΔ14 mutations are observed in 2.8% of cases of LUADs (Lu et al., 2017) , at a relatively high frequency, considering MET is estimated to be mutated in 4-6% of lung adenocarcinomas (Caso et al., 2020) . These data suggest that nearly half of all MET mutations are splicing mutations.

Two separate studies investigating METΔ14 revealed that although both primary samples and cell lines were heterozygous for exon 14 deletions, predominantly, the METΔ14 isoform was produced (Kong-Beltran et al., 2006; Onozato et al., 2009) . Furthermore, Lu et al. identified somatic mutations at exon 14 of MET in a larger cohort of LUAD samples from The Cancer Genome Atlas (TCGA) and found that the majority of these samples overexpress MET and predominantly express the mutant isoform (Lu et al., 2017) . These three studies suggest an allele-specific expression bias of METΔ14 . Allele-specific expression occurs when one allele exhibits a higher level of expression compared to the other and is implicated in cancer (Bielski et al., 2018; Castel et al., 2018; Mayba et al., 2014; Ongen et al., 2014; PCAWG Transcriptome Core Group et al., 2020) . Notably, this bias in allele expression can directly influence the expression of cancer driver genes through specific expression of the oncogenic allele (Bielski et al., 2018; Mayba et al., 2014) . We hypothesized that METΔ14 undergoes allele-specific expression which may be critical to its transformative abilities. The Lu et al. study did not further investigate the zygosity of the LUAD samples nor any associated copy number changes, which may contribute to allelic imbalance. Additionally, the matched DNA and RNA sequencing data associated with these samples permit tracking of allele usage. Therefore, we further investigated the underlying mechanism driving the predominant expression of METΔ14 in these LUAD samples.

While typically allele-expression bias is due to copy number alteration (PCAWG Transcriptome Core Group et al., 2020) , we found no sample with a METΔ14 mutation and an associated copy number amplification of the MET gene ( Figure 1A ). This is consistent with previous findings revealing that METΔ14 and MET copy number alterations are mutually exclusive (Baldacci et al., 2020; Guo et al., 2019; Onozato et al., 2009) . However, the majority of METΔ14 samples also have co-occurring MET mRNA overexpression ( Figure 1A ). This indicates these METΔ14 samples employ a different mechanism to drive MET overexpression independent of MET copy number alterations.

To determine if zygosity could explain METΔ14 allele-specific expression, we compared whole exome and matched RNA-seq data from these TCGA samples ( Figure 1B and 1C). Additionally, we confirmed the strong bias of METΔ14 mutant allele expression from the quantification of the percentage of METΔ14 isoform usage in the LUAD tumor samples (Soulette et al., 2023) ( Figure 1C ). We used germline single nucleotide variants (SNVs) to determine both zygosity and to track which allele was used to express MET. We manually scanned the entire length of the MET gene for evidence of SNVs. For heterozygous samples, we identified the ratio of RNA expression at the SNVs to determine the allelic imbalance in these samples. ( Figure 1B ). To confirm this allele-specific expression of METΔ14 is unique to cancer, it is necessary to analyze both the tumor and matched normal samples; however, we identified only one METΔ14 sample that was heterozygous and had a matched normal sample ( Figure 1D ). As predicted, while the matched normal sample equally expressed both the wild type and non-reference SNVs, there is a clear allele-specific expression in the tumor. While the remaining heterozygous samples lacked matched normal RNA-seq data, all samples exhibited an allelic imbalance in the tumor ( Figure 1E -K). This suggests the allele-specific expression of METΔ14 is a widespread phenomenon among these LUAD tumors. Furthermore, given that 8/12 of METΔ14 samples also overexpress total MET compared to normal samples ( Figure 1A ), this suggests that METΔ14 is overexpressed in an allele-specific manner in these samples.

In a study of cancer genomes examining the positive selection of oncogenic driver mutant alleles through ploidy changes, alleles expressing activating mutations in MET were found to experience strong positive selection (Bielski et al., 2018) . This study examined all MET oncogenic driver mutations at DNA-level copy number selection, which does not capture RNA-level changes in expression. However, the work presented in our publication uses both DNA and RNA sequencing data to show that ploidy changes are not required for allele-specific expression of METΔ14 ( Figure 1A ). Given the consistency of METΔ14 overexpression in the majority of samples examined, our data suggest the overexpression of the oncogenic allele is required for METΔ14 -driven cancer progression. Further studies are necessary to understand the molecular mechanism of the allele-specific overexpression which could involve cis -acting genetic or epigenetic factors, or allele-specific transcript stability.

We believe that two factors drive METΔ14 as an oncogene in LUAD: 1) METΔ14 allele-specific overexpression, and 2) the abundance of MET ligand, HGF (Lu et al., 2017) . These factors have implications for how METΔ14 is studied. A body of work aims to decouple the METΔ14 mutation from overexpression due to MET amplification by using CRISPR-based methods (Lu et al., 2017; Togashi et al., 2015; Wang et al., 2022) . With these methods, mutations are created at splice sites of exon 14 to force the production of METΔ14 from the endogenous promoter to transform cells in the presence of its activating ligand, HGF. However this CRISPR-based expression does not lead to overexpression of the METΔ14 mRNA. We compared the ability of overexpressed and CRISPR-based METΔ14 to provide immortalized tracheobronchial epithelial cells (AALE) (Lundberg et al., 2002) a proliferative advantage in a growth in low attachment (GILA) assay (Rotem et al., 2015) . While we confirmed CRISPR-based METΔ14 mRNA ( Figure 1L ), this did not induce activated MET protein ( Figure 1M ). Furthermore, only overexpressed METΔ14 confers a selective advantage in the GILA assay ( Figure 1N ). This activation occurs independent of HGF, revealing the oncogenic potential of METΔ14 overexpression alone. These experiments provide further evidence that MET exon 14 skipping, alone, is not sufficient for oncogene activation and that there needs additional increased dosage of the METΔ14 allele; consistent with the characterization in primary samples. Thus, we suggest future studies to functionally characterize METΔ14 will more accurately recapitulate tumor cells if METΔ14 is overexpressed and performed with and without the presence of ligand.

Methods

Data Acquisition

For each TCGA sample from the Lung Adenocarcinoma TCGA PanCancer Atlas cohort labeled in Figure 1C, previously -aligned whole exome (DNA-seq) and RNA-seq samples were securely downloaded from the NCI Genomic Data Commons. The OncoPrint was generated in cBioPortal (Cerami et al., 2012; Gao et al., 2013)

SNV Characterization

All TCGA samples were associated with files: tumor and matched normal DNA-seq data, as well as tumor RNA-seq data. Two TCGA samples had matched normal RNA-seq data, which could be used to confirm cancer-specific expression. To visualize allele-specific expression within this data, all files per sample were imported into Interactive Genomics Viewer (IGV) (Robinson et al., 2011) . As SNVs provide a track record of allele abundance, we scanned the entire MET gene and determined relative percentages of SNVs at those loci between the DNA and RNA-seq data, which can be calculated in IGV. For the DNA-seq, a near 1:1 ratio of SNV to wild type allele indicates heterozygosity. For the matched RNA-seq data, a proportion of SNV to wild type allele close to 0% or 100% of heterozygous SNV loci indicates allelic imbalance.

Cell line generation

AALE cell lines (Lundberg et al., 2002) were cultured in SAGM Small Airway Epithelial Cell Growth Medium BulletKit (CC-3118, Lonza) using the ReagentPack Subculture Reagents (CC-5034, Lonza). Cells were grown under constant 37°C and 5% CO 2 . CRISPR-expressed lines were generated by transfecting AALEs with stable Cas9 expression, and using the below single guide RNA (sgRNA) expressed with a lentiviral vector targeting the splice site of MET exon 14:

METsg8: 5’- TACCGAGCTACTTTTCCAGA -3’

Overexpressed lines were generated using lentiviral plx317 METΔ14 and plx301 KRAS G12V, a gift from Alice Berger.

RT-PCR METΔ14 mRNA Validation

RNA was isolated via TriReagent (Sigma-Aldrich, T9424) and the Zymo Direct Zol RNA Miniprep kit (Zymo Research Corporation, R2050). Subsequent cDNA prep was performed using the High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, 4368814), and resulting cDNA was used as a PCR template using the HotStart ReadyMix PCR Kit (Kapa Biosystems, KK6202). Exon spanning primers were ordered from IDT:

MET_splice_F: 5’- TGGGTTTTTCCTGTGGCTGA -3’

MET_splice_R: 5’- GGGCCCAATCACTACATGCT -3’

and run using these cycling conditions: initial denaturation of 95°C 3min, 30 cycles of 98°C 20sec, 61°C 15sec and 72°C 30sec, a final extension of 72°C 2min.

Resulting amplicons were run on a 1.2-2% agarose gel until wild type and exon-skipped isoforms were resolved. Relative isoform abundance ratios were quantified using Image Studio Lite.

Western Blot

One tablet of Protease Inhibitor cocktail (Roche, 04693124001) was added to a 10mL aliquot of RIPA lysis buffer (Thermo Fisher Scientific, 89900) and dissolved completely. Cells were grown to 80% confluency in 10cm tissue treated dishes (Santa Cruz Biotechnology, Inc., sc-200286). Plates washed 2x with ice cold DPBS (Life Technologies Corp., 14190144). 1mL ice cold RIPA with Protease Inhibitor was added to the cells and scraped into 2mL tube. Tubes were incubated on ice and vortexed periodically. Lysed cells were pelleted at max speed in a chilled centrifuge for 10min, then supernatant was aliquoted in volumes of 200μl. Lysates were stored at -80°C.

Lysate was sonicated at the maximum setting for increments of 30 seconds 2x. Lysate was left to recover on ice for 1 minute between sonications. The protein content in the sonicated samples was quantified using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, 23225).

30μg protein was added to 11.7μl MLB (1:10 dilution of 2-mercaptoethanol (Bio-Rad, 1610710) and 4x Laemmli sample buffer (Bio-Rad, 1610747)), and volume was brought to 46.7ul total using RIPA buffer in a 2mL tube. Samples were denatured at 95°C for 5 minutes. Samples and Precision Plus protein standards (Bio-Rad, 1610374) were loaded into a 4-15% Mini-PROTEAN TGX Precast Gel (Bio-Rad, 4561083EDU). Gel was run at 70V using 1x TGX Buffer (Bio-Rad, 1610772) until adequate separation of ladder was obtained.

The Trans-Blot Turbo RTA Transfer PVDF kit (Bio-Rad, 1704272) protocol with 1x Bio-Rad Transfer Buffer (Bio-Rad, 10026938) was used with the High Molecular Weight setting. After the transfer, the membrane was blocked with 4% BSA (Millipore Sigma, A3059) for 1 hour. Then 1:2000 primary antibody (pMET (Cell Signaling Technology, 3077), total MET (Cell Signaling Technology, 8198) was incubated at 4°C overnight.

The next day, the membrane was washed 3x 10min with 1x TBST (1x TBS with 1mL Tween-20 (Fisher Scientific, BP337)). Blots were incubated with 1:1000 HRP-conjugated secondary antibody (Li-Cor, 92601000) in 4% BSA for 1 hour. Blots were washed 3x 5min in 1x TBST. Luminol pen (Li-Cor, 926-91000) was used to mark ladder, then blots were incubated with ECL (WesternSure PREMIUM Chemiluminescent Substrate (Li-Cor, 926-95000) for 5 minutes. Blots were visualized with C-Digit Imager (Li-Cor) according to equipment instructions.

To blot for actin, blots were washed with 1x TBST 3x 10min, then incubated in 1:1000 actin-HRP antibody (Cell Signaling Technology, 7074S) in 4% BSA. Blots were washed 3x 5min in 1x TBST, ladder marked with Luminol pen, incubated with ECL for 5 minutes, and imaged as above.

GILA Cell Viability Assay AALE cells were grown to ~80% confluency. Plates were trypsinized and 2,500 cells in a volume of 100ul were seeded per well into a 96 well low attachment plate (Corning, 3474). Four technical replicates were used per cell line. Additionally 2,500 cells per well (100ul) was seeded into a flat bottom 96 well assay plate (Thomas Scientific, 290-8027-W1F). It's important to leave one well of space in between each replicate, as to avoid fluorescence bleed over during measurement. The low attachment plate was left in a 37°C incubator for 8 days. Cell viability in the assay plate, or the ‘Day 0’ measurement, was assessed in order to normalize Day 8 to the initial plating concentration. First, Cell Titer Glo (Promega, G7572) was allowed to come to room temperature. Then, a 1:1 ratio of Cell Titer Glo was added to the cells using a multichannel pipette, so the total volume was 200ul. Plates were shaken 2 minutes by hand to lyse the cells, then mixed with single channel pipette by pipetting 4 -5 times. The plate was left undisturbed and sheltered from light for 20 minutes, then emitted fluorescence was measured using the Varioskan LUX microplate reader (Thermo Fisher, VL0000D0). This provided raw values of fluorescence proportional to the amount of ATP produced, and served as a normalization value for Day 0 per cell line. After 8 days, both Cell Titer Glo and the low attachment plate were allowed to come to room temperature, and lysis and imaging protocol repeated as above. These raw values were normalized to the average of the four Day 0 replicates to compare cell viability between cell lines.

Acknowledgments

Acknowledgments

The results shown here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga. We would like to thank Alice Berger, Lindsay Hinck, and Eva Robinson for helpful feedback and discussions for this work.

References

  1. Baldacci Simon, Figeac Martin, Antoine Martine, Descarpentries Clotilde, Kherrouche Zoulika, Jamme Philippe, Copin Marie-Christine, Tulasne David, Nanni Isabelle, Beau-Faller Michèle, Melaabi Samia, Levallet Guénaëlle, Quoix Elisabeth, Moro-Sibilot Denis, Friard Sylvie, Missy Pascale, Barlesi Fabrice, Cadranel Jacques, Cortot Alexis B. High MET Overexpression Does Not Predict the presence of MET exon 14 Splice Mutations in NSCLC: Results From the IFCT PREDICT.amm study. Journal of Thoracic Oncology. 2020 Jan 1;15(1):120–124. doi: 10.1016/j.jtho.2019.09.196. [DOI] [PubMed] [Google Scholar]
  2. Bielski Craig M., Donoghue Mark T.A., Gadiya Mayur, Hanrahan Aphrothiti J., Won Helen H., Chang Matthew T., Jonsson Philip, Penson Alexander V., Gorelick Alexander, Harris Christopher, Schram Alison M., Syed Aijazuddin, Zehir Ahmet, Chapman Paul B., Hyman David M., Solit David B., Shannon Kevin, Chandarlapaty Sarat, Berger Michael F., Taylor Barry S. Widespread Selection for Oncogenic Mutant Allele Imbalance in Cancer. Cancer Cell. 2018 Nov 1;34(5):852–862.e4. doi: 10.1016/j.ccell.2018.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bottaro, Donald P, Rubin, Jeffrey S 1991. Identification of the Hepatocyte Growth Factor Receptor as the c-met. Science; Washington. 251: 802-805. [DOI] [PubMed]
  4. Brooks Angela N., Yang Li, Duff Michael O., Hansen Kasper D., Park Jung W., Dudoit Sandrine, Brenner Steven E., Graveley Brenton R. Conservation of an RNA regulatory map between Drosophila and mammals . Genome Research. 2010 Oct 4;21(2):193–202. doi: 10.1101/gr.108662.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. The Cancer Genome Atlas Research Network Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 9;511(7511):543–550. doi: 10.1038/nature13385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caso Raul, Sanchez-Vega Francisco, Tan Kay See, Mastrogiacomo Brooke, Zhou Jian, Jones Gregory D., Nguyen Bastien, Schultz Nikolaus, Connolly James G., Brandt Whitney S., Bott Matthew J., Rocco Gaetano, Molena Daniela, Isbell James M., Liu Yuan, Mayo Marty W., Adusumilli Prasad S., Travis William D., Jones David R. The Underlying Tumor Genomics of Predominant Histologic Subtypes in Lung Adenocarcinoma. Journal of Thoracic Oncology. 2020 Dec 1;15(12):1844–1856. doi: 10.1016/j.jtho.2020.08.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Castel Stephane E., Cervera Alejandra, Mohammadi Pejman, Aguet François, Reverter Ferran, Wolman Aaron, Guigo Roderic, Iossifov Ivan, Vasileva Ana, Lappalainen Tuuli. Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk. Nature Genetics. 2018 Aug 20;50(9):1327–1334. doi: 10.1038/s41588-018-0192-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cerami Ethan, Gao Jianjiong, Dogrusoz Ugur, Gross Benjamin E., Sumer Selcuk Onur, Aksoy Bülent Arman, Jacobsen Anders, Byrne Caitlin J., Heuer Michael L., Larsson Erik, Antipin Yevgeniy, Reva Boris, Goldberg Arthur P., Sander Chris, Schultz Nikolaus. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discovery. 2012 May 1;2(5):401–404. doi: 10.1158/2159-8290.cd-12-0095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frampton Garrett M., Ali Siraj M., Rosenzweig Mark, Chmielecki Juliann, Lu Xinyuan, Bauer Todd M., Akimov Mikhail, Bufill Jose A., Lee Carrie, Jentz David, Hoover Rick, Ou Sai-Hong Ignatius, Salgia Ravi, Brennan Tim, Chalmers Zachary R., Jaeger Savina, Huang Alan, Elvin Julia A., Erlich Rachel, Fichtenholtz Alex, Gowen Kyle A., Greenbowe Joel, Johnson Adrienne, Khaira Depinder, McMahon Caitlin, Sanford Eric M., Roels Steven, White Jared, Greshock Joel, Schlegel Robert, Lipson Doron, Yelensky Roman, Morosini Deborah, Ross Jeffrey S., Collisson Eric, Peters Malte, Stephens Philip J., Miller Vincent A. Activation of MET via Diverse Exon 14 Splicing Alterations Occurs in Multiple Tumor Types and Confers Clinical Sensitivity to MET Inhibitors. Cancer Discovery. 2015 Aug 1;5(8):850–859. doi: 10.1158/2159-8290.cd-15-0285. [DOI] [PubMed] [Google Scholar]
  10. Gao Jianjiong, Aksoy Bülent Arman, Dogrusoz Ugur, Dresdner Gideon, Gross Benjamin, Sumer S. Onur, Sun Yichao, Jacobsen Anders, Sinha Rileen, Larsson Erik, Cerami Ethan, Sander Chris, Schultz Nikolaus. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Science Signaling. 2013 Apr 2;6(269) doi: 10.1126/scisignal.2004088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guo Robin, Berry Lynne D., Aisner Dara L., Sheren Jamie, Boyle Theresa, Bunn Paul A., Johnson Bruce E., Kwiatkowski David J., Drilon Alexander, Sholl Lynette M., Kris Mark G. MET IHC Is a Poor Screen for MET Amplification or MET Exon 14 Mutations in Lung Adenocarcinomas: Data from a Tri-Institutional Cohort of the Lung Cancer Mutation Consortium. Journal of Thoracic Oncology. 2019 Sep 1;14(9):1666–1671. doi: 10.1016/j.jtho.2019.06.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jeffers Michael, Taylor Gregory A., Weidner K. Michael, Omura Satoshi, Vande Woude George F. Degradation of the Met Tyrosine Kinase Receptor by the Ubiquitin-Proteasome Pathway. Molecular and Cellular Biology. 1997 Feb 1;17(2):799–808. doi: 10.1128/mcb.17.2.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kong-Beltran Monica, Seshagiri Somasekar, Zha Jiping, Zhu Wenjing, Bhawe Kaumudi, Mendoza Nerissa, Holcomb Thomas, Pujara Kanan, Stinson Jeremy, Fu Ling, Severin Christophe, Rangell Linda, Schwall Ralph, Amler Lukas, Wickramasinghe Dineli, Yauch Robert. Somatic Mutations Lead to an Oncogenic Deletion of Met in Lung Cancer. Cancer Research. 2006 Jan 1;66(1):283–289. doi: 10.1158/0008-5472.can-05-2749. [DOI] [PubMed] [Google Scholar]
  14. Lu Xinyuan, Peled Nir, Greer John, Wu Wei, Choi Peter, Berger Alice H., Wong Sergio, Jen Kuang-Yu, Seo Youngho, Hann Byron, Brooks Angela, Meyerson Matthew, Collisson Eric A. MET Exon 14 Mutation Encodes an Actionable Therapeutic Target in Lung Adenocarcinoma . Cancer Research. 2017 Aug 14;77(16):4498–4505. doi: 10.1158/0008-5472.can-16-1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lundberg Ante S, Randell Scott H, Stewart Sheila A, Elenbaas Brian, Hartwell Kimberly A, Brooks Mary W, Fleming Mark D, Olsen John C, Miller Scott W, Weinberg Robert A, Hahn William C. Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene. 2002 Jun 27;21(29):4577–4586. doi: 10.1038/sj.onc.1205550. [DOI] [PubMed] [Google Scholar]
  16. Ma, Patrick C, Kijima, Takashi, Maulik, Gautam, Fox, Edward A, Sattler, Martin, Griffin, James D, Johnson, Bruce E, Salgia, Ravi 2003. C-MET mutational analysis in small cell lung cancer: Novel juxtamembrane. [PubMed]
  17. Ma Patrick C., Jagadeeswaran Ramasamy, Jagadeesh Simha, Tretiakova Maria S., Nallasura Vidya, Fox Edward A., Hansen Mark, Schaefer Erik, Naoki Katsuhiko, Lader Alan, Richards William, Sugarbaker David, Husain Aliya N., Christensen James G., Salgia Ravi. Functional Expression and Mutations of c-Met and Its Therapeutic Inhibition with SU11274 and Small Interfering RNA in Non–Small Cell Lung Cancer. Cancer Research. 2005 Feb 15;65(4):1479–1488. doi: 10.1158/0008-5472.can-04-2650. [DOI] [PubMed] [Google Scholar]
  18. Mayba Oleg, Gilbert Houston N, Liu Jinfeng, Haverty Peter M, Jhunjhunwala Suchit, Jiang Zhaoshi, Watanabe Colin, Zhang Zemin. MBASED: allele-specific expression detection in cancer tissues and cell lines. Genome Biology. 2014 Aug 1;15(8) doi: 10.1186/s13059-014-0405-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ongen Halit, Andersen Claus L., Bramsen Jesper B., Oster Bodil, Rasmussen Mads H., Ferreira Pedro G., Sandoval Juan, Vidal Enrique, Whiffin Nicola, Planchon Alexandra, Padioleau Ismael, Bielser Deborah, Romano Luciana, Tomlinson Ian, Houlston Richard S., Esteller Manel, Orntoft Torben F., Dermitzakis Emmanouil T. Putative cis-regulatory drivers in colorectal cancer. Nature. 2014 Jul 23;512(7512):87–90. doi: 10.1038/nature13602. [DOI] [PubMed] [Google Scholar]
  20. Onozato Ryoichi, Kosaka Takayuki, Kuwano Hiroyuki, Sekido Yoshitaka, Yatabe Yasushi, Mitsudomi Tetsuya. Activation of MET by Gene Amplification or by Splice Mutations Deleting the Juxtamembrane Domain in Primary Resected Lung Cancers. Journal of Thoracic Oncology. 2009 Jan 1;4(1):5–11. doi: 10.1097/jto.0b013e3181913e0e. [DOI] [PubMed] [Google Scholar]
  21. PCAWG Transcriptome Core Group. Calabrese Claudia, Davidson Natalie R., Demircioğlu Deniz, Fonseca Nuno A., He Yao, Kahles André, Lehmann Kjong-Van, Liu Fenglin, Shiraishi Yuichi, Soulette Cameron M., Urban Lara, Calabrese Claudia, Davidson Natalie R., Demircioğlu Deniz, Fonseca Nuno A., He Yao, Kahles André, Lehmann Kjong-Van, Liu Fenglin, Shiraishi Yuichi, Soulette Cameron M., Urban Lara, Greger Liliana, Li Siliang, Liu Dongbing, Perry Marc D., Xiang Qian, Zhang Fan, Zhang Junjun, Bailey Peter, Erkek Serap, Hoadley Katherine A., Hou Yong, Huska Matthew R., Kilpinen Helena, Korbel Jan O., Marin Maximillian G., Markowski Julia, Nandi Tannistha, Pan-Hammarström Qiang, Pedamallu Chandra Sekhar, Siebert Reiner, Stark Stefan G., Su Hong, Tan Patrick, Waszak Sebastian M., Yung Christina, Zhu Shida, Awadalla Philip, Creighton Chad J., Meyerson Matthew, Ouellette B. F. Francis, Wu Kui, Yang Huanming, Fonseca Nuno A., Kahles André, Lehmann Kjong-Van, Urban Lara, Soulette Cameron M., Shiraishi Yuichi, Liu Fenglin, He Yao, Demircioğlu Deniz, Davidson Natalie R., Calabrese Claudia, Zhang Junjun, Perry Marc D., Xiang Qian, Greger Liliana, Li Siliang, Liu Dongbing, Stark Stefan G., Zhang Fan, Amin Samirkumar B., Bailey Peter, Chateigner Aurélien, Cortés-Ciriano Isidro, Craft Brian, Erkek Serap, Frenkel-Morgenstern Milana, Goldman Mary, Hoadley Katherine A., Hou Yong, Huska Matthew R., Khurana Ekta, Kilpinen Helena, Korbel Jan O., Lamaze Fabien C., Li Chang, Li Xiaobo, Li Xinyue, Liu Xingmin, Marin Maximillian G., Markowski Julia, Nandi Tannistha, Nielsen Morten M., Ojesina Akinyemi I., Pan-Hammarström Qiang, Park Peter J., Pedamallu Chandra Sekhar, Pedersen Jakob S., Siebert Reiner, Su Hong, Tan Patrick, Teh Bin Tean, Wang Jian, Waszak Sebastian M., Xiong Heng, Yakneen Sergei, Ye Chen, Yung Christina, Zhang Xiuqing, Zheng Liangtao, Zhu Jingchun, Zhu Shida, Awadalla Philip, Creighton Chad J., Meyerson Matthew, Ouellette B. F. Francis, Wu Kui, Yang Huanming, Göke Jonathan, Schwarz Roland F., Stegle Oliver, Zhang Zemin, Brazma Alvis, Rätsch Gunnar, Brooks Angela N., Brazma Alvis, Brooks Angela N., Göke Jonathan, Rätsch Gunnar, Schwarz Roland F., Stegle Oliver, Zhang Zemin, Aaltonen Lauri A., Abascal Federico, Abeshouse Adam, Aburatani Hiroyuki, Adams David J., Agrawal Nishant, Ahn Keun Soo, Ahn Sung-Min, Aikata Hiroshi, Akbani Rehan, Akdemir Kadir C., Al-Ahmadie Hikmat, Al-Sedairy Sultan T., Al-Shahrour Fatima, Alawi Malik, Albert Monique, Aldape Kenneth, Alexandrov Ludmil B., Ally Adrian, Alsop Kathryn, Alvarez Eva G., Amary Fernanda, Amin Samirkumar B., Aminou Brice, Ammerpohl Ole, Anderson Matthew J., Ang Yeng, Antonello Davide, Anur Pavana, Aparicio Samuel, Appelbaum Elizabeth L., Arai Yasuhito, Aretz Axel, Arihiro Koji, Ariizumi Shun-ichi, Armenia Joshua, Arnould Laurent, Asa Sylvia, Assenov Yassen, Atwal Gurnit, Aukema Sietse, Auman J. Todd, Aure Miriam R. R., Awadalla Philip, Aymerich Marta, Bader Gary D., Baez-Ortega Adrian, Bailey Matthew H., Bailey Peter J., Balasundaram Miruna, Balu Saianand, Bandopadhayay Pratiti, Banks Rosamonde E., Barbi Stefano, Barbour Andrew P., Barenboim Jonathan, Barnholtz-Sloan Jill, Barr Hugh, Barrera Elisabet, Bartlett John, Bartolome Javier, Bassi Claudio, Bathe Oliver F., Baumhoer Daniel, Bavi Prashant, Baylin Stephen B., Bazant Wojciech, Beardsmore Duncan, Beck Timothy A., Behjati Sam, Behren Andreas, Niu Beifang, Bell Cindy, Beltran Sergi, Benz Christopher, Berchuck Andrew, Bergmann Anke K., Bergstrom Erik N., Berman Benjamin P., Berney Daniel M., Bernhart Stephan H., Beroukhim Rameen, Berrios Mario, Bersani Samantha, Bertl Johanna, Betancourt Miguel, Bhandari Vinayak, Bhosle Shriram G., Biankin Andrew V., Bieg Matthias, Bigner Darell, Binder Hans, Birney Ewan, Birrer Michael, Biswas Nidhan K., Bjerkehagen Bodil, Bodenheimer Tom, Boice Lori, Bonizzato Giada, De Bono Johann S., Boot Arnoud, Bootwalla Moiz S., Borg Ake, Borkhardt Arndt, Boroevich Keith A., Borozan Ivan, Borst Christoph, Bosenberg Marcus, Bosio Mattia, Boultwood Jacqueline, Bourque Guillaume, Boutros Paul C., Bova G. Steven, Bowen David T., Bowlby Reanne, Bowtell David D. L., Boyault Sandrine, Boyce Rich, Boyd Jeffrey, Brazma Alvis, Brennan Paul, Brewer Daniel S., Brinkman Arie B., Bristow Robert G., Broaddus Russell R., Brock Jane E., Brock Malcolm, Broeks Annegien, Brooks Angela N., Brooks Denise, Brors Benedikt, Brunak Søren, Bruxner Timothy J. C., Bruzos Alicia L., Buchanan Alex, Buchhalter Ivo, Buchholz Christiane, Bullman Susan, Burke Hazel, Burkhardt Birgit, Burns Kathleen H., Busanovich John, Bustamante Carlos D., Butler Adam P., Butte Atul J., Byrne Niall J., Børresen-Dale Anne-Lise, Caesar-Johnson Samantha J., Cafferkey Andy, Cahill Declan, Calabrese Claudia, Caldas Carlos, Calvo Fabien, Camacho Niedzica, Campbell Peter J., Campo Elias, Cantù Cinzia, Cao Shaolong, Carey Thomas E., Carlevaro-Fita Joana, Carlsen Rebecca, Cataldo Ivana, Cazzola Mario, Cebon Jonathan, Cerfolio Robert, Chadwick Dianne E., Chakravarty Dimple, Chalmers Don, Chan Calvin Wing Yiu, Chan Kin, Chan-Seng-Yue Michelle, Chandan Vishal S., Chang David K., Chanock Stephen J., Chantrill Lorraine A., Chateigner Aurélien, Chatterjee Nilanjan, Chayama Kazuaki, Chen Hsiao-Wei, Chen Jieming, Chen Ken, Chen Yiwen, Chen Zhaohong, Cherniack Andrew D., Chien Jeremy, Chiew Yoke-Eng, Chin Suet-Feung, Cho Juok, Cho Sunghoon, Choi Jung Kyoon, Choi Wan, Chomienne Christine, Chong Zechen, Choo Su Pin, Chou Angela, Christ Angelika N., Christie Elizabeth L., Chuah Eric, Cibulskis Carrie, Cibulskis Kristian, Cingarlini Sara, Clapham Peter, Claviez Alexander, Cleary Sean, Cloonan Nicole, Cmero Marek, Collins Colin C., Connor Ashton A., Cooke Susanna L., Cooper Colin S., Cope Leslie, Corbo Vincenzo, Cordes Matthew G., Cordner Stephen M., Cortés-Ciriano Isidro, Covington Kyle, Cowin Prue A., Craft Brian, Craft David, Creighton Chad J., Cun Yupeng, Curley Erin, Cutcutache Ioana, Czajka Karolina, Czerniak Bogdan, Dagg Rebecca A., Danilova Ludmila, Davi Maria Vittoria, Davidson Natalie R., Davies Helen, Davis Ian J., Davis-Dusenbery Brandi N., Dawson Kevin J., De La Vega Francisco M., De Paoli-Iseppi Ricardo, Defreitas Timothy, Tos Angelo P. Dei, Delaneau Olivier, Demchok John A., Demeulemeester Jonas, Demidov German M., Demircioğlu Deniz, Dennis Nening M., Denroche Robert E., Dentro Stefan C., Desai Nikita, Deshpande Vikram, Deshwar Amit G., Desmedt Christine, Deu-Pons Jordi, Dhalla Noreen, Dhani Neesha C., Dhingra Priyanka, Dhir Rajiv, DiBiase Anthony, Diamanti Klev, Ding Li, Ding Shuai, Dinh Huy Q., Dirix Luc, Doddapaneni HarshaVardhan, Donmez Nilgun, Dow Michelle T., Drapkin Ronny, Drechsel Oliver, Drews Ruben M., Serge Serge, Dudderidge Tim, Dueso-Barroso Ana, Dunford Andrew J., Dunn Michael, Dursi Lewis Jonathan, Duthie Fraser R., Dutton-Regester Ken, Eagles Jenna, Easton Douglas F., Edmonds Stuart, Edwards Paul A., Edwards Sandra E., Eeles Rosalind A., Ehinger Anna, Eils Juergen, Eils Roland, El-Naggar Adel, Eldridge Matthew, Ellrott Kyle, Erkek Serap, Escaramis Georgia, Espiritu Shadrielle M. G., Estivill Xavier, Etemadmoghadam Dariush, Eyfjord Jorunn E., Faltas Bishoy M., Fan Daiming, Fan Yu, Faquin William C., Farcas Claudiu, Fassan Matteo, Fatima Aquila, Favero Francesco, Fayzullaev Nodirjon, Felau Ina, Fereday Sian, Ferguson Martin L., Ferretti Vincent, Feuerbach Lars, Field Matthew A., Fink J. Lynn, Finocchiaro Gaetano, Fisher Cyril, Fittall Matthew W., Fitzgerald Anna, Fitzgerald Rebecca C., Flanagan Adrienne M., Fleshner Neil E., Flicek Paul, Foekens John A., Fong Kwun M., Fonseca Nuno A., Foster Christopher S., Fox Natalie S., Fraser Michael, Frazer Scott, Frenkel-Morgenstern Milana, Friedman William, Frigola Joan, Fronick Catrina C., Fujimoto Akihiro, Fujita Masashi, Fukayama Masashi, Fulton Lucinda A., Fulton Robert S., Furuta Mayuko, Futreal P. Andrew, Füllgrabe Anja, Gabriel Stacey B., Gallinger Steven, Gambacorti-Passerini Carlo, Gao Jianjiong, Gao Shengjie, Garraway Levi, Garred Øystein, Garrison Erik, Garsed Dale W., Gehlenborg Nils, Gelpi Josep L. L., George Joshy, Gerhard Daniela S., Gerhauser Clarissa, Gershenwald Jeffrey E., Gerstein Mark, Gerstung Moritz, Getz Gad, Ghori Mohammed, Ghossein Ronald, Giama Nasra H., Gibbs Richard A., Gibson Bob, Gill Anthony J., Gill Pelvender, Giri Dilip D., Glodzik Dominik, Gnanapragasam Vincent J., Goebler Maria Elisabeth, Goldman Mary J., Gomez Carmen, Gonzalez Santiago, Gonzalez-Perez Abel, Gordenin Dmitry A., Gossage James, Gotoh Kunihito, Govindan Ramaswamy, Grabau Dorthe, Graham Janet S., Grant Robert C., Green Anthony R., Green Eric, Greger Liliana, Grehan Nicola, Grimaldi Sonia, Grimmond Sean M., Grossman Robert L., Grundhoff Adam, Gundem Gunes, Guo Qianyun, Gupta Manaswi, Gupta Shailja, Gut Ivo G., Gut Marta, Göke Jonathan, Ha Gavin, Haake Andrea, Haan David, Haas Siegfried, Haase Kerstin, Haber James E., Habermann Nina, Hach Faraz, Haider Syed, Hama Natsuko, Hamdy Freddie C., Hamilton Anne, Hamilton Mark P., Han Leng, Hanna George B., Hansmann Martin, Haradhvala Nicholas J., Harismendy Olivier, Harliwong Ivon, Harmanci Arif O., Harrington Eoghan, Hasegawa Takanori, Haussler David, Hawkins Steve, Hayami Shinya, Hayashi Shuto, Hayes D. Neil, Hayes Stephen J., Hayward Nicholas K., Hazell Steven, He Yao, Heath Allison P., Heath Simon C., Hedley David, Hegde Apurva M., Heiman David I., Heinold Michael C., Heins Zachary, Heisler Lawrence E., Hellstrom-Lindberg Eva, Helmy Mohamed, Heo Seong Gu, Hepperla Austin J., Heredia-Genestar José María, Herrmann Carl, Hersey Peter, Hess Julian M., Hilmarsdottir Holmfridur, Hinton Jonathan, Hirano Satoshi, Hiraoka Nobuyoshi, Hoadley Katherine A., Hobolth Asger, Hodzic Ermin, Hoell Jessica I., Hoffmann Steve, Hofmann Oliver, Holbrook Andrea, Holik Aliaksei Z., Hollingsworth Michael A., Holmes Oliver, Holt Robert A., Hong Chen, Hong Eun Pyo, Hong Jongwhi H., Hooijer Gerrit K., Hornshøj Henrik, Hosoda Fumie, Hou Yong, Hovestadt Volker, Howat William, Hoyle Alan P., Hruban Ralph H., Hu Jianhong, Hu Taobo, Hua Xing, Huang Kuan-lin, Huang Mei, Huang Mi Ni, Huang Vincent, Huang Yi, Huber Wolfgang, Hudson Thomas J., Hummel Michael, Hung Jillian A., Huntsman David, Hupp Ted R., Huse Jason, Huska Matthew R., Hutter Barbara, Hutter Carolyn M., Hübschmann Daniel, Iacobuzio-Donahue Christine A., Imbusch Charles David, Imielinski Marcin, Imoto Seiya, Isaacs William B., Isaev Keren, Ishikawa Shumpei, Iskar Murat, Islam S. M. Ashiqul, Ittmann Michael, Ivkovic Sinisa, Izarzugaza Jose M. G., Jacquemier Jocelyne, Jakrot Valerie, Jamieson Nigel B., Jang Gun Ho, Jang Se Jin, Jayaseelan Joy C., Jayasinghe Reyka, Jefferys Stuart R., Jegalian Karine, Jennings Jennifer L., Jeon Seung-Hyup, Jerman Lara, Ji Yuan, Jiao Wei, Johansson Peter A., Johns Amber L., Johns Jeremy, Johnson Rory, Johnson Todd A., Jolly Clemency, Joly Yann, Jonasson Jon G., Jones Corbin D., Jones David R., Jones David T. W., Jones Nic, Jones Steven J. M., Jonkers Jos, Ju Young Seok, Juhl Hartmut, Jung Jongsun, Juul Malene, Juul Randi Istrup, Juul Sissel, Jäger Natalie, Kabbe Rolf, Kahles Andre, Kahraman Abdullah, Kaiser Vera B., Kakavand Hojabr, Kalimuthu Sangeetha, von Kalle Christof, Kang Koo Jeong, Karaszi Katalin, Karlan Beth, Karlić Rosa, Karsch Dennis, Kasaian Katayoon, Kassahn Karin S., Katai Hitoshi, Kato Mamoru, Katoh Hiroto, Kawakami Yoshiiku, Kay Jonathan D., Kazakoff Stephen H., Kazanov Marat D., Keays Maria, Kebebew Electron, Kefford Richard F., Kellis Manolis, Kench James G., Kennedy Catherine J., Kerssemakers Jules N. A., Khoo David, Khoo Vincent, Khuntikeo Narong, Khurana Ekta, Kilpinen Helena, Kim Hark Kyun, Kim Hyung-Lae, Kim Hyung-Yong, Kim Hyunghwan, Kim Jaegil, Kim Jihoon, Kim Jong K., Kim Youngwook, King Tari A., Klapper Wolfram, Kleinheinz Kortine, Klimczak Leszek J., Knappskog Stian, Kneba Michael, Knoppers Bartha M., Koh Youngil, Komorowski Jan, Komura Daisuke, Komura Mitsuhiro, Kong Gu, Kool Marcel, Korbel Jan O., Korchina Viktoriya, Korshunov Andrey, Koscher Michael, Koster Roelof, Kote-Jarai Zsofia, Koures Antonios, Kovacevic Milena, Kremeyer Barbara, Kretzmer Helene, Kreuz Markus, Krishnamurthy Savitri, Kube Dieter, Kumar Kiran, Kumar Pardeep, Kumar Sushant, Kumar Yogesh, Kundra Ritika, Kübler Kirsten, Küppers Ralf, Lagergren Jesper, Lai Phillip H., Laird Peter W., Lakhani Sunil R., Lalansingh Christopher M., Lalonde Emilie, Lamaze Fabien C., Lambert Adam, Lander Eric, Landgraf Pablo, Landoni Luca, Langerød Anita, Lanzós Andrés, Larsimont Denis, Larsson Erik, Lathrop Mark, Lau Loretta M. S., Lawerenz Chris, Lawlor Rita T., Lawrence Michael S., Lazar Alexander J., Lazic Ana Mijalkovic, Le Xuan, Lee Darlene, Lee Donghoon, Lee Eunjung Alice, Lee Hee Jin, Lee Jake June-Koo, Lee Jeong-Yeon, Lee Juhee, Lee Ming Ta Michael, Lee-Six Henry, Lehmann Kjong-Van, Lehrach Hans, Lenze Dido, Leonard Conrad R., Leongamornlert Daniel A., Leshchiner Ignaty, Letourneau Louis, Letunic Ivica, Levine Douglas A., Lewis Lora, Ley Tim, Li Chang, Li Constance H., Li Haiyan Irene, Li Jun, Li Lin, Li Shantao, Li Siliang, Li Xiaobo, Li Xiaotong, Li Xinyue, Li Yilong, Liang Han, Liang Sheng-Ben, Lichter Peter, Lin Pei, Lin Ziao, Linehan W. M., Lingjærde Ole Christian, Liu Dongbing, Liu Eric Minwei, Liu Fei-Fei Fei, Liu Fenglin, Liu Jia, Liu Xingmin, Livingstone Julie, Livitz Dimitri, Livni Naomi, Lochovsky Lucas, Loeffler Markus, Long Georgina V., Lopez-Guillermo Armando, Lou Shaoke, Louis David N., Lovat Laurence B., Lu Yiling, Lu Yong-Jie, Lu Youyong, Luchini Claudio, Lungu Ilinca, Luo Xuemei, Luxton Hayley J., Lynch Andy G., Lype Lisa, López Cristina, López-Otín Carlos, Ma Eric Z., Ma Yussanne, MacGrogan Gaetan, MacRae Shona, Macintyre Geoff, Madsen Tobias, Maejima Kazuhiro, Mafficini Andrea, Maglinte Dennis T., Maitra Arindam, Majumder Partha P., Malcovati Luca, Malikic Salem, Malleo Giuseppe, Mann Graham J., Mantovani-Löffler Luisa, Marchal Kathleen, Marchegiani Giovanni, Mardis Elaine R., Margolin Adam A., Marin Maximillian G., Markowetz Florian, Markowski Julia, Marks Jeffrey, Marques-Bonet Tomas, Marra Marco A., Marsden Luke, Martens John W. M., Martin Sancha, Martin-Subero Jose I., Martincorena Iñigo, Martinez-Fundichely Alexander, Maruvka Yosef E., Mashl R. Jay, Massie Charlie E., Matthew Thomas J., Matthews Lucy, Mayer Erik, Mayes Simon, Mayo Michael, Mbabaali Faridah, McCune Karen, McDermott Ultan, McGillivray Patrick D., McLellan Michael D., McPherson John D., McPherson John R., McPherson Treasa A., Meier Samuel R., Meng Alice, Meng Shaowu, Menzies Andrew, Merrett Neil D., Merson Sue, Meyerson Matthew, Meyerson William, Mieczkowski Piotr A., Mihaiescu George L., Mijalkovic Sanja, Mikkelsen Tom, Milella Michele, Mileshkin Linda, Miller Christopher A., Miller David K., Miller Jessica K., Mills Gordon B., Milovanovic Ana, Minner Sarah, Miotto Marco, Arnau Gisela Mir, Mirabello Lisa, Mitchell Chris, Mitchell Thomas J., Miyano Satoru, Miyoshi Naoki, Mizuno Shinichi, Molnár-Gábor Fruzsina, Moore Malcolm J., Moore Richard A., Morganella Sandro, Morris Quaid D., Morrison Carl, Mose Lisle E., Moser Catherine D., Muiños Ferran, Mularoni Loris, Mungall Andrew J., Mungall Karen, Musgrove Elizabeth A., Mustonen Ville, Mutch David, Muyas Francesc, Muzny Donna M., Muñoz Alfonso, Myers Jerome, Myklebost Ola, Möller Peter, Nagae Genta, Nagrial Adnan M., Nahal-Bose Hardeep K., Nakagama Hitoshi, Nakagawa Hidewaki, Nakamura Hiromi, Nakamura Toru, Nakano Kaoru, Nandi Tannistha, Nangalia Jyoti, Nastic Mia, Navarro Arcadi, Navarro Fabio C. P., Neal David E., Nettekoven Gerd, Newell Felicity, Newhouse Steven J., Newton Yulia, Ng Alvin Wei Tian, Ng Anthony, Nicholson Jonathan, Nicol David, Nie Yongzhan, Nielsen G. Petur, Nielsen Morten Muhlig, Nik-Zainal Serena, Noble Michael S., Nones Katia, Northcott Paul A., Notta Faiyaz, O’Connor Brian D., O’Donnell Peter, O’Donovan Maria, O’Meara Sarah, O’Neill Brian Patrick, O’Neill J. Robert, Ocana David, Ochoa Angelica, Oesper Layla, Ogden Christopher, Ohdan Hideki, Ohi Kazuhiro, Ohno-Machado Lucila, Oien Karin A., Ojesina Akinyemi I., Ojima Hidenori, Okusaka Takuji, Omberg Larsson, Ong Choon Kiat, Ossowski Stephan, Ott German, Ouellette B. F. Francis, P’ng Christine, Paczkowska Marta, Paiella Salvatore, Pairojkul Chawalit, Pajic Marina, Pan-Hammarström Qiang, Papaemmanuil Elli, Papatheodorou Irene, Paramasivam Nagarajan, Park Ji Wan, Park Joong-Won, Park Keunchil, Park Kiejung, Park Peter J., Parker Joel S., Parsons Simon L., Pass Harvey, Pasternack Danielle, Pastore Alessandro, Patch Ann-Marie, Pauporté Iris, Pea Antonio, Pearson John V., Pedamallu Chandra Sekhar, Pedersen Jakob Skou, Pederzoli Paolo, Peifer Martin, Pennell Nathan A., Perou Charles M., Perry Marc D., Petersen Gloria M., Peto Myron, Petrelli Nicholas, Petryszak Robert, Pfister Stefan M., Phillips Mark, Pich Oriol, Pickett Hilda A., Pihl Todd D., Pillay Nischalan, Pinder Sarah, Pinese Mark, Pinho Andreia V., Pitkänen Esa, Pivot Xavier, Piñeiro-Yáñez Elena, Planko Laura, Plass Christoph, Polak Paz, Pons Tirso, Popescu Irinel, Potapova Olga, Prasad Aparna, Preston Shaun R., Prinz Manuel, Pritchard Antonia L., Prokopec Stephenie D., Provenzano Elena, Puente Xose S., Puig Sonia, Puiggròs Montserrat, Pulido-Tamayo Sergio, Pupo Gulietta M., Purdie Colin A., Quinn Michael C., Rabionet Raquel, Rader Janet S., Radlwimmer Bernhard, Radovic Petar, Raeder Benjamin, Raine Keiran M., Ramakrishna Manasa, Ramakrishnan Kamna, Ramalingam Suresh, Raphael Benjamin J., Rathmell W. Kimryn, Rausch Tobias, Reifenberger Guido, Reimand Jüri, Reis-Filho Jorge, Reuter Victor, Reyes-Salazar Iker, Reyna Matthew A., Reynolds Sheila M., Rheinbay Esther, Riazalhosseini Yasser, Richardson Andrea L., Richter Julia, Ringel Matthew, Ringnér Markus, Rino Yasushi, Rippe Karsten, Roach Jeffrey, Roberts Lewis R., Roberts Nicola D., Roberts Steven A., Robertson A. Gordon, Robertson Alan J., Rodriguez Javier Bartolomé, Rodriguez-Martin Bernardo, Rodríguez-González F. Germán, Roehrl Michael H. A., Rohde Marius, Rokutan Hirofumi, Romieu Gilles, Rooman Ilse, Roques Tom, Rosebrock Daniel, Rosenberg Mara, Rosenstiel Philip C., Rosenwald Andreas, Rowe Edward W., Royo Romina, Rozen Steven G., Rubanova Yulia, Rubin Mark A., Rubio-Perez Carlota, Rudneva Vasilisa A., Rusev Borislav C., Ruzzenente Andrea, Rätsch Gunnar, Sabarinathan Radhakrishnan, Sabelnykova Veronica Y., Sadeghi Sara, Sahinalp S. Cenk, Saini Natalie, Saito-Adachi Mihoko, Saksena Gordon, Salcedo Adriana, Salgado Roberto, Salichos Leonidas, Sallari Richard, Saller Charles, Salvia Roberto, Sam Michelle, Samra Jaswinder S., Sanchez-Vega Francisco, Sander Chris, Sanders Grant, Sarin Rajiv, Sarrafi Iman, Sasaki-Oku Aya, Sauer Torill, Sauter Guido, Saw Robyn P. M., Scardoni Maria, Scarlett Christopher J., Scarpa Aldo, Scelo Ghislaine, Schadendorf Dirk, Schein Jacqueline E., Schilhabel Markus B., Schlesner Matthias, Schlomm Thorsten, Schmidt Heather K., Schramm Sarah-Jane, Schreiber Stefan, Schultz Nikolaus, Schumacher Steven E., Schwarz Roland F., Scolyer Richard A., Scott David, Scully Ralph, Seethala Raja, Segre Ayellet V., Selander Iris, Semple Colin A., Senbabaoglu Yasin, Sengupta Subhajit, Sereni Elisabetta, Serra Stefano, Sgroi Dennis C., Shackleton Mark, Shah Nimish C., Shahabi Sagedeh, Shang Catherine A., Shang Ping, Shapira Ofer, Shelton Troy, Shen Ciyue, Shen Hui, Shepherd Rebecca, Shi Ruian, Shi Yan, Shiah Yu-Jia, Shibata Tatsuhiro, Shih Juliann, Shimizu Eigo, Shimizu Kiyo, Shin Seung Jun, Shiraishi Yuichi, Shmaya Tal, Shmulevich Ilya, Shorser Solomon I., Short Charles, Shrestha Raunak, Shringarpure Suyash S., Shriver Craig, Shuai Shimin, Sidiropoulos Nikos, Siebert Reiner, Sieuwerts Anieta M., Sieverling Lina, Signoretti Sabina, Sikora Katarzyna O., Simbolo Michele, Simon Ronald, Simons Janae V., Simpson Jared T., Simpson Peter T., Singer Samuel, Sinnott-Armstrong Nasa, Sipahimalani Payal, Skelly Tara J., Smid Marcel, Smith Jaclyn, Smith-McCune Karen, Socci Nicholas D., Sofia Heidi J., Soloway Matthew G., Song Lei, Sood Anil K., Sothi Sharmila, Sotiriou Christos, Soulette Cameron M., Span Paul N., Spellman Paul T., Sperandio Nicola, Spillane Andrew J., Spiro Oliver, Spring Jonathan, Staaf Johan, Stadler Peter F., Staib Peter, Stark Stefan G., Stebbings Lucy, Stefánsson Ólafur Andri, Stegle Oliver, Stein Lincoln D., Stenhouse Alasdair, Stewart Chip, Stilgenbauer Stephan, Stobbe Miranda D., Stratton Michael R., Stretch Jonathan R., Struck Adam J., Stuart Joshua M., Stunnenberg Henk G., Su Hong, Su Xiaoping, Sun Ren X., Sungalee Stephanie, Susak Hana, Suzuki Akihiro, Sweep Fred, Szczepanowski Monika, Sültmann Holger, Yugawa Takashi, Tam Angela, Tamborero David, Tan Benita Kiat Tee, Tan Donghui, Tan Patrick, Tanaka Hiroko, Taniguchi Hirokazu, Tanskanen Tomas J., Tarabichi Maxime, Tarnuzzer Roy, Tarpey Patrick, Taschuk Morgan L., Tatsuno Kenji, Tavaré Simon, Taylor Darrin F., Taylor-Weiner Amaro, Teague Jon W., Teh Bin Tean, Tembe Varsha, Temes Javier, Thai Kevin, Thayer Sarah P., Thiessen Nina, Thomas Gilles, Thomas Sarah, Thompson Alan, Thompson Alastair M., Thompson John F. F., Thompson R. Houston, Thorne Heather, Thorne Leigh B., Thorogood Adrian, Tiao Grace, Tijanic Nebojsa, Timms Lee E., Tirabosco Roberto, Tojo Marta, Tommasi Stefania, Toon Christopher W., Toprak Umut H., Torrents David, Tortora Giampaolo, Tost Jörg, Totoki Yasushi, Townend David, Traficante Nadia, Treilleux Isabelle, Trotta Jean-Rémi, Trümper Lorenz H. P., Tsao Ming, Tsunoda Tatsuhiko, Tubio Jose M. C., Tucker Olga, Turkington Richard, Turner Daniel J., Tutt Andrew, Ueno Masaki, Ueno Naoto T., Umbricht Christopher, Umer Husen M., Underwood Timothy J., Urban Lara, Urushidate Tomoko, Ushiku Tetsuo, Uusküla-Reimand Liis, Valencia Alfonso, Van Den Berg David J., Van Laere Steven, Van Loo Peter, Van Meir Erwin G., Van den Eynden Gert G., Van der Kwast Theodorus, Vasudev Naveen, Vazquez Miguel, Vedururu Ravikiran, Veluvolu Umadevi, Vembu Shankar, Verbeke Lieven P. C., Vermeulen Peter, Verrill Clare, Viari Alain, Vicente David, Vicentini Caterina, VijayRaghavan K., Viksna Juris, Vilain Ricardo E., Villasante Izar, Vincent-Salomon Anne, Visakorpi Tapio, Voet Douglas, Vyas Paresh, Vázquez-García Ignacio, Waddell Nick M., Waddell Nicola, Wadelius Claes, Wadi Lina, Wagener Rabea, Wala Jeremiah A., Wang Jian, Wang Jiayin, Wang Linghua, Wang Qi, Wang Wenyi, Wang Yumeng, Wang Zhining, Waring Paul M., Warnatz Hans-Jörg, Warrell Jonathan, Warren Anne Y., Waszak Sebastian M., Wedge David C., Weichenhan Dieter, Weinberger Paul, Weinstein John N., Weischenfeldt Joachim, Weisenberger Daniel J., Welch Ian, Wendl Michael C., Werner Johannes, Whalley Justin P., Wheeler David A., Whitaker Hayley C., Wigle Dennis, Wilkerson Matthew D., Williams Ashley, Wilmott James S., Wilson Gavin W., Wilson Julie M., Wilson Richard K., Winterhoff Boris, Wintersinger Jeffrey A., Wiznerowicz Maciej, Wolf Stephan, Wong Bernice H., Wong Tina, Wong Winghing, Woo Youngchoon, Wood Scott, Wouters Bradly G., Wright Adam J., Wright Derek W., Wright Mark H., Wu Chin-Lee, Wu Dai-Ying, Wu Guanming, Wu Jianmin, Wu Kui, Wu Yang, Wu Zhenggang, Xi Liu, Xia Tian, Xiang Qian, Xiao Xiao, Xing Rui, Xiong Heng, Xu Qinying, Xu Yanxun, Xue Hong, Yachida Shinichi, Yakneen Sergei, Yamaguchi Rui, Yamaguchi Takafumi N., Yamamoto Masakazu, Yamamoto Shogo, Yamaue Hiroki, Yang Fan, Yang Huanming, Yang Jean Y., Yang Liming, Yang Lixing, Yang Shanlin, Yang Tsun-Po, Yang Yang, Yao Xiaotong, Yaspo Marie-Laure, Yates Lucy, Yau Christina, Ye Chen, Ye Kai, Yellapantula Venkata D., Yoon Christopher J., Yoon Sung-Soo, Yousif Fouad, Yu Jun, Yu Kaixian, Yu Willie, Yu Yingyan, Yuan Ke, Yuan Yuan, Yuen Denis, Yung Christina K., Zaikova Olga, Zamora Jorge, Zapatka Marc, Zenklusen Jean C., Zenz Thorsten, Zeps Nikolajs, Zhang Cheng-Zhong, Zhang Fan, Zhang Hailei, Zhang Hongwei, Zhang Hongxin, Zhang Jiashan, Zhang Jing, Zhang Junjun, Zhang Xiuqing, Zhang Xuanping, Zhang Yan, Zhang Zemin, Zhao Zhongming, Zheng Liangtao, Zheng Xiuqing, Zhou Wanding, Zhou Yong, Zhu Bin, Zhu Hongtu, Zhu Jingchun, Zhu Shida, Zou Lihua, Zou Xueqing, deFazio Anna, van As Nicholas, van Deurzen Carolien H. M., van de Vijver Marc J., van’t Veer L., von Mering Christian, PCAWG Transcriptome Working Group. PCAWG Consortium Genomic basis for RNA alterations in cancer. Nature. 2020 Feb 5;578(7793):129–136. doi: 10.1038/s41586-020-1970-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Peschard Pascal, Fournier Tanya M, Lamorte Louie, Naujokas Monica A, Band Hamid, Langdon Wallace Y, Park Morag. Mutation of the c-Cbl TKB Domain Binding Site on the Met Receptor Tyrosine Kinase Converts It into a Transforming Protein. Molecular Cell. 2001 Nov 1;8(5):995–1004. doi: 10.1016/s1097-2765(01)00378-1. [DOI] [PubMed] [Google Scholar]
  23. Robinson James T, Thorvaldsdóttir Helga, Winckler Wendy, Guttman Mitchell, Lander Eric S, Getz Gad, Mesirov Jill P. Integrative genomics viewer. Nature Biotechnology. 2011 Jan 1;29(1):24–26. doi: 10.1038/nbt.1754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Robles-Espinoza Carla Daniela, Mohammadi Pejman, Bonilla Ximena, Gutierrez-Arcelus Maria. Allele-specific expression: applications in cancer and technical considerations. Current Opinion in Genetics & Development. 2021 Feb 1;66:10–19. doi: 10.1016/j.gde.2020.10.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rotem Asaf, Janzer Andreas, Izar Benjamin, Ji Zhe, Doench John G., Garraway Levi A., Struhl Kevin. Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation. Proceedings of the National Academy of Sciences. 2015 Apr 20;112(18):5708–5713. doi: 10.1073/pnas.1505979112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Soulette Cameron M, Hrabeta-Robinson Eva, Arevalo Carlos, Felton Colette, Tang Alison D, Marin Maximillian G, Brooks Angela N. Full-length transcript alterations in human bronchial epithelial cells with U2AF1 S34F mutations . Life Science Alliance. 2023 Jul 24;6(10):e202000641–e202000641. doi: 10.26508/lsa.202000641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Togashi Yosuke, Mizuuchi Hiroshi, Tomida Shuta, Terashima Masato, Hayashi Hidetoshi, Nishio Kazuto, Mitsudomi Tetsuya. MET gene exon 14 deletion created using the CRISPR/Cas9 system enhances cellular growth and sensitivity to a MET inhibitor. Lung Cancer. 2015 Dec 1;90(3):590–597. doi: 10.1016/j.lungcan.2015.10.020. [DOI] [PubMed] [Google Scholar]
  28. Wang Feng, Liu Yang, Qiu Wanglong, Shum Elaine, Feng Monica, Zhao Dejian, Zheng Deyou, Borczuk Alain, Cheng Haiying, Halmos Balazs. Functional Analysis of MET Exon 14 Skipping Alteration in Cancer Invasion and Metastatic Dissemination . Cancer Research. 2022 Jan 25;82(7):1365–1379. doi: 10.1158/0008-5472.can-21-1327. [DOI] [PubMed] [Google Scholar]

Articles from microPublication Biology are provided here courtesy of California Institute of Technology

RESOURCES