Skip to main content
Journal of Sichuan University (Medical Sciences) logoLink to Journal of Sichuan University (Medical Sciences)
. 2023 Sep 20;54(5):857–862. [Article in Chinese] doi: 10.12182/20230960302

液-液相分离在细胞命运转变和疾病中的作用

Role of Liquid-Liquid Phase Separation in Cell Fate Transition and Diseases

一龙 陈 1,2,3, 晓茹 凌 4, 浩澎 于 1,2,3, 俊军 丁 2,3,4,Δ
PMCID: PMC10579061  PMID: 37866939

Abstract

液-液相分离作为一种细胞结构的组织与形成的新机制,在调控细胞命运转变和疾病发病机制中发挥着重要作用,正受到广泛关注。液-液相分离可形成一些具有液态流动性的细胞结构,如生殖颗粒、压力应激颗粒和核仁等经典的无膜细胞器,它们通常由生物大分子通过弱的多价相互作用形成的高浓度液体聚集而来。液-液相分离可参与调节细胞内的多种生命活动,其异常则会导致细胞功能紊乱,从而促进神经退行性疾病、传染病及癌症等疾病的发生发展。本综述通过总结各种无膜细胞器在生理与病理性细胞命运转变过程中的液-液相分离动态,揭示了它们在细胞分化、发育及各种疾病发生过程中的关键作用,为液-液相分离相关研究提供了新的理论框架和潜在的疾病治疗靶点,为未来的研究提供了新的方向。

Keywords: 相分离, 细胞命运转变, 疾病发病机制, 治疗策略, 综述


细胞命运转变是多细胞生物中一系列重要的生物学过程,对于界定各类细胞的特定功能具有至关重要的意义。在调控细胞命运的背后,涉及众多分子机制,包括但不限于表观遗传景观的重塑、三维染色质的重构以及相分离等[1-4]。其中,相分离动态变化在细胞命运转变过程中是一个广泛存在的现象[2-3],并逐渐凸显为调控细胞命运的新型机制[3]

液-液相分离(liquid-liquid phase separation, LLPS)的细胞结构具有液态流动性,通常由生物大分子通过弱的多价相互作用形成无膜细胞器或生物分子凝聚体,如生殖颗粒、压力应激颗粒和核仁[5-7]。这些结构参与众多至关重要的生物学功能,包括但不限于mRNA调控、染色质三维结构和基因表达调控[8-10]。相分离在不同细胞命运转变过程中会经历组装、解离、融合,同时还会发生成分和亚细胞定位的变化[3, 5, 7, 11-12] ,呈现出高度的动态性。充足的证据强调了相分离事件在基础生物学过程中的潜在功能和多样性作用,特别是在早期胚胎发育、生殖细胞发育和疾病发病机制中的重要性[13-14]

此外,细胞命运调控的分子机制同时也是临床领域中的一项关键议题,提供了寻找潜在治疗靶点的可能性。以白血病发病过程为例,已有研究表明,致病融合基因的异常相分离过程会导致染色质环的错误折叠,从而增强癌基因的表达活性[15]。因此,开发新的治疗手段来调节相分离,在治疗与异常凝聚体相关的疾病方面可能具有重要的应用前景。

本文系统地回顾了细胞命运转变过程以及各种疾病发病机制中的相分离动态变化,以期为相关研究提供参考,促进相分离在细胞命运转变过程以及疾病发病机制中的应用。

1. 相分离与细胞命运转变

1.1. 早期胚胎发育

生殖颗粒主要位于早期胚胎发育过程中的生殖细胞内,是最早被发现且被广泛研究的一类相分离无膜细胞器,比如线虫P颗粒和果蝇极颗粒[16-17]。这些凝聚体由RNA及其关联蛋白质构成,决定了受精卵中哪些区域将分化为生殖细胞。在秀丽隐杆线虫的生殖细胞系中,P颗粒表现为一种连续、高度动态的液体凝聚体。其中,PGL-1和PGL-3形成了P颗粒的核心凝聚体,它们起着招募其他成分的关键作用。另外,MEG-3和MEG-4含有无序结构域蛋白质,它们在受精卵的后部驱动P颗粒的形成。P颗粒最初在秀丽隐杆线虫的受精卵细胞质中均匀分布,随着不对称分裂的发生,在受精卵的后部逐渐富集[17],并被分配给一个子代细胞。此外,在生殖细胞前体到生殖细胞的发育过程中,ZNFX-1和WAGO-4从P颗粒中分离出来,并形成了靠近细胞核的Z颗粒。

核内凝聚体/核内相分离结构包括核仁、Cajal小体(Cajal bodies, CB)和组蛋白基因座小体(histone locus bodies, HLBs)等,这些结构在早期胚胎发育过程中也经历着动态的变化。核仁是核糖体RNA转录、加工以及核糖体组装的核内凝聚体[18]。在小鼠、斑马鱼、果蝇和线虫的胚胎中,rDNA位点上核仁的形成依赖于RNA聚合酶I通过rRNA转录的激活[19-21]。CB由相分离蛋白coilin、snRNPs和snRNAs组成,是snRNPs组装和snRNAs修饰的场所[22]。在斑马鱼的合子基因组激活(zygotic genome activation, ZGA)开始时,CB的组装发生在snRNA基因座上[23],尽管受精卵中的许多CB来自于亲本的细胞核,但转录抑制会减少CB的数量,这表明CB的形成在一定程度上依赖于snRNA的转录[24]。类似地,HLBs也是在ZGA期间于组蛋白基因座上逐渐形成[23, 25]。总的来说,核内凝集体通常在不同的基因座上组装,并且在早期胚胎发育过程中高度依赖于ZGA时期的转录激活。

1.2. 细胞分化

无膜细胞器的动态变化在细胞分化过程中也具有关键的调控作用。生殖颗粒具有多样性和高度细胞特异性的结构,可极好地作为研究生殖细胞发育中相分离动态的模型[3, 26]。它们的亚细胞定位可能在生殖细胞成熟过程中具有重要功能,尽管这方面的解析尚不完善。以果蝇为例,在卵巢中期发育阶段,滋养细胞中mRNA的运输引发了极颗粒在卵母细胞的后极聚集[16]。在非洲爪蛙和斑马鱼中,Balbiani体最初由生殖颗粒和线粒体在细胞核附近共同组成,随后在卵母细胞生长过程中向胚胎的植物半球扩散[27-29]。这些结构包含有原始生殖细胞形成所必需的生殖质,但其确切功能目前仍待解决。在小鼠精子生成过程中,piP小体和pi小体与粗线期前的PIWI相互作用RNA(piwi-interacting RNA,piRNA)有关联,这些RNA是一组介导转座子沉默的小RNA。而在前精原干细胞中,piP体通常与pi体相邻,并在圆形精子细胞阶段之前与原染色体结合,形成成熟的染色体[30-31]。这些发现表明,无膜和有膜细胞器的相对位置可能在功能上相互关联,并在生殖细胞分化中发挥作用。

从表皮角质细胞向鳞状细胞的转变是另一个典型的过程,其中角质透明颗粒(keratohyalin granule, KG)的动态发生了改变[13]。在基底前体细胞分化为鳞状细胞的过程中,KG先后经历了形成和溶解的过程。

除了典型的无膜细胞器,一些转录调控因子和表观遗传因子在细胞分化过程中也会通过相分离的形式发挥转录调控功能[12, 32-33]。例如,在果蝇神经前体细胞的有丝分裂染色体上,进化上保守的转录因子Prospero通过液-液相分离促进了终末神经分化,从而招募并聚集HP1α以促进异染色质的形成[12]。同样,转录共激活因子SS18通过相分离来调控Brg/Brahma相关因子复合物,从而介导多能-体细胞转变(pluripotent-somatic transition, PST)[33]。除了蛋白质介导的相分离外,细胞中还存在着大量由编码或非编码RNA组成的RNA凝聚物。RNA的核苷酸序列、长度、结构、修饰和相互作用等方式是调控RNA相分离的重要因素[34]。在细胞核内,数百种非编码RNA能够形成高浓度聚集,并参与组织核内区域,从而调控RNA加工、异染色质组装和基因表达等多种生物学过程[35]。例如, 长链非编码RNA DIGIT是保守的发育调控因子,它通过促进BRD3在内胚层转录因子增强子上的聚集,进行内胚层分化的控制[32]。综上所述,一些DNA结合蛋白质或非编码RNA可以通过液-液相分离来调控分化相关基因的表达,从而影响细胞分化过程。

1.3. 体细胞重编程

先驱转录因子的相分离被证明是调控体细胞重编程中染色质三维结构重建的新机制。通过向体细胞中导入四个先驱转录因子(OCT4、SOX2、KLF4和C-MYC),可以诱导体细胞向诱导多能干细胞(induced pluripotency stem cells, iPSCs)转变[36]。OCT4的相分离通过调节染色质拓扑相关结构域(topologically associating domain, TAD)的重建来促进小鼠胚胎成纤维细胞(mouse embryonic fibroblasts, MEFs)到iPSC的重编程,这首次揭示了重编程因子的相分离在重编程过程中的推动作用[37]。此外,另一项研究发现KLF4能够与DNA片段形成聚合物,这种聚合物通过DNA桥联的方式建立长距离染色质间的相互连接,从而在体细胞重编程过程中调节多能性基因的转录[38]。值得注意的是,KLF4-DNA聚集的形成依赖于锌指结构域与DNA的结合,而非固有无序域(intrinsically disordered regions, IDRs)。人类基因组中存在着数百个锌指蛋白,其他锌指蛋白可能也会形成相分离来调控转录。综上所述,在体细胞重编程过程中,转录因子可以通过相分离来调节基因表达。

1.4. 其他

在细胞衰老过程中,特别是在由原癌基因诱导的衰老过程中,研究焦点主要集中在衰老相关异染色质灶(senescence-associated heterochromatin foci, SAHF)的动态变化中,这些灶点代表了在衰老细胞中形成的特殊异染色质领域[39-40]。此外,细胞衰老可以由DNA损伤触发。研究已经证明,通过液-液相分离机制,DNA损伤后核焦点中p53结合蛋白1(53BP1)的积累能够激活p53信号通路,并抑制DNA损伤诱导的细胞衰老[41]

DDX3X是DEAD-box家族的RNA结合蛋白,对于应激颗粒的组装和NLRP3炎症小体的激活至关重要[42]。此外,DDX3X在小鼠骨髓源性巨噬细胞的细胞命运决策中扮演着重要角色[43]

朊蛋白样结构域(prion-like domains, PrLDs)是一种本质上无序的且低复杂度的结构域,能够导致液-液相分离和凝聚体的形成[44]。通过研究证实PrLDs支持调控真菌细胞身份的转录因子复合物的组装,并且与调控哺乳动物细胞命运的“超级增强子”之间存在相似之处[45]

2. 相分离与疾病

2.1. 相分离疾病机制

液-液相分离现象在多种疾病机制中存在关联,涉及包括神经退行性疾病、传染病以及癌症等不同类型的疾病[14]。有研究表明与神经退行性疾病相关的蛋白质异常聚集可能导致其病理的变化,例如Tau蛋白在阿尔茨海默病中的聚集[46]、Lewy小体在帕金森病中的聚集[47]、亨廷顿外显子1在亨廷顿病中的聚集[48],以及肌应激颗粒蛋白在肌萎缩侧索硬化和额颞叶痴呆中的聚集[49-50],这些不溶性蛋白质的聚集现象均是神经退行性疾病领域最常见的病理现象。同时有研究证实,病毒具备产生液态特性的生物分子凝聚体的能力,进而在病毒基因组复制、转录翻译、核衣壳组装和释放等过程中扮演关键角色。例如DNA病毒能够通过相分离机制在核内形成病毒复制区域,许多负链RNA病毒也能够引导病毒包涵体的形成[51-52],通过将抗病毒传感器隔离到病毒包涵体中,生物分子凝聚体可以阻止先天免疫途径的激活[53-55]。此外,由基因组突变引起的蛋白质相分离能力的异常变化,是推动癌症发生发展的因素之一[11]。例如,组蛋白H3K27M和H3K36M的突变分别发生在脑干胶质瘤和肉瘤中,导致染色质浓缩体和基因表达受到干扰[56-57]。急性淋巴细胞白血病中,结构变异引发的转录浓缩体错位可以导致癌基因的激活[58]。某些先天性遗传疾病也与异常的转录浓缩体有关。例如,在多指征小鼠模型中,转录因子中的重复扩增可以改变它们的相分离能力并扰乱它们的转录浓缩体[59];在歌舞伎面谱综合征(Kabuki syndrome)疾病模型中,MLL4相关的转录浓缩体受损会导致由PcG体介导的核力学应力增加[60];在雷特综合征(Rett syndrome)中, MeCP2的突变降低了其相分离形成异染色质浓缩体的能力,这可能与雷特综合征的发病机制有关[61]。另外,在皮肤屏障疾病中,filaggrin突变或环境变化会导致角质颗粒的相分离动态发生改变[13]

2.2. 新的癌症治疗策略

随着对液-液相分离在癌症生物学中的进一步理解,目前提出了两种基于液-液相分离的新型癌症治疗方法。一种治疗方法是通过干扰IDRs或物理化学特性直接破坏凝聚体的形成。以MYC蛋白质为例,IIA4B20、IIA6B17和mycmycin-1/2等小分子化合物对其高度特异,能有效地抑制MYC引发的恶性细胞转化[62]。YK-4-279可与致癌转录因子EWS-FLI1的IDR结合,阻止EWS-FLI1与RNA解旋酶A之间的相互作用,从而减缓EWS细胞生长[63]。抗HIV药物elvitegravir能够直接与高度无序的类固醇受体共激活因子1(SRC1)结合,并通过破坏SRC1/YAP/TEAD凝聚体内的液-液相分离来有效地抑制YAP癌基因的转录[64]。此外,通过高通量药物筛选得到的主要化合物C108,能够减轻SG核心成分G3BP2在乳腺癌起始中的作用,并提高化疗药物的疗效[65]。另一种治疗方法是通过翻译后修饰(post-translational modifications, PTM)的方式调控液-液相分离。由组蛋白甲基转移酶NSD2介导的SRC3的液-液相分离在多发性骨髓瘤中导致博来替尼的耐药性,而抑制剂SI-2则能够抑制SRC3的液-液相分离并提高博来替尼的治疗效果[66]。此外,对奥拉帕尼的研究表明,它能够抑制PARP1/2进而干扰PARylation相关的DNA修复凝聚体的形成过程[67]

3. 总结与展望

在本综述中,我们深入探讨了细胞命运转变过程中液-液相分离的关键作用以及其在疾病机制中的重要性。相分离机制通过调控无膜细胞器的形成和分解,对细胞的分化和重编程等生物学过程产生深远影响。早期胚胎发育、细胞分化以及体细胞重编程等阶段都受到相分离动态的精密调控。与此同时,我们认识到相分离异常与神经退行性疾病、癌症等多种疾病的发病机制密切相关。在癌症治疗领域,基于液-液相分离的新型治疗策略也不断涌现,研究人员正在探索通过破坏凝聚体的形成或通过翻译后修饰介导凝聚过程来干预疾病进程。这一创新的方法为开发更精准、高效的治疗手段提供了可能性。

随着对相分离机制的深入研究,我们有望揭示更多基础生物学过程的细节,进一步阐明相分离在细胞命运调控中的作用。此外,基于相分离的新型治疗策略将可能成为疾病治疗领域的重要创新方向,为神经退行性疾病、癌症等提供更有效的治疗手段。我们深信,相分离的研究将持续推动生命科学和医学的进步,为解决重大疾病问题、促进健康做出积极贡献。

*    *    *

作者贡献声明 丁俊军负责论文构思,陈一龙负责初稿写作,丁俊军、于浩澎和凌晓茹负责审读与编辑写作,于浩澎负责经费获取,陈一龙和凌晓茹负责调查研究,丁俊军和于浩澎负责提供资源和监督指导。所有作者已经同意将文章提交给本刊,且对将要发表的版本进行最终定稿,并同意对工作的所有方面负责。

利益冲突 所有作者均声明不存在利益冲突

Funding Statement

国家自然科学基金项目(No. 32100927)资助

Contributor Information

一龙 陈 (Yilong CHEN), Email: chenyilong@scu.edu.cn.

俊军 丁 (Junjun DING), Email: dingjunj@mail.sysu.edu.cn.

References

  • 1.ATLASI Y, STUNNENBERG H G The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017;18(11):643–658. doi: 10.1038/nrg.2017.57. [DOI] [PubMed] [Google Scholar]
  • 2.GROSCH M, ITTERMANN S, SHAPOSHNIKOV D, et al Chromatin-associated membraneless organelles in regulation of cellular differentiation. Stem Cell Reports. 2020;15(6):1220–1232. doi: 10.1016/j.stemcr.2020.10.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.SO C, CHENG S, SCHUH M Phase separation during germline development. Trends Cell Biol. 2021;31(4):254–268. doi: 10.1016/j.tcb.2020.12.004. [DOI] [PubMed] [Google Scholar]
  • 4.ZHENG H, XIE W The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol. 2019;20(9):535–550. doi: 10.1038/s41580-019-0132-4. [DOI] [PubMed] [Google Scholar]
  • 5.SABARI B R, DALL'AGNESE A, YOUNG R A Biomolecular condensates in the nucleus. Trends Biochem Sci. 2020;45(11):961–977. doi: 10.1016/j.tibs.2020.06.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.PROTTER D, PARKER R Principles and properties of stress granules. Trends Cell Biol. 2016;26(9):668–679. doi: 10.1016/j.tcb.2016.05.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.BANANI S F, LEE H O, HYMAN A A, et al Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18(5):285–298. doi: 10.1038/nrm.2017.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.BOIJA A, KLEIN I A, SABARI B R, et al Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell. 2018;175(7):1842–1855.e16. doi: 10.1016/j.cell.2018.10.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.CHO W K, SPILLE J H, HECHT M, et al Mediator and RNA polymerase Ⅱ clusters associate in transcription-dependent condensates. Science. 2018;361(6400):412–415. doi: 10.1126/science.aar4199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.SABARI B R, DALL'AGNESE A, BOIJA A, et al Coactivator condensation at super-enhancers links phase separation and gene control. Science. 2018;361(6400):eaar3958. doi: 10.1126/science.aar3958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.BOIJA A, KLEIN I A, YOUNG R A Biomolecular condensates and cancer. Cancer Cell. 2021;39(2):174–192. doi: 10.1016/j.ccell.2020.12.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.LIU X, SHEN J, XIE L, et al Mitotic implantation of the transcription factor Prospero via phase separation drives terminal neuronal differentiation. Dev Cell. 2020;52(3):277–293.e8. doi: 10.1016/j.devcel.2019.11.019. [DOI] [PubMed] [Google Scholar]
  • 13.QUIROZ F G, FIORE V F, LEVORSE J, et al Liquid-liquid phase separation drives skin barrier formation. Science. 2020;367(6483):eaax9554. doi: 10.1126/science.aax9554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.SPANNL S, TERESHCHENKO M, MASTROMARCO G J, et al Biomolecular condensates in neurodegeneration and cancer. Traffic. 2019;20(12):890–911. doi: 10.1111/tra.12704. [DOI] [PubMed] [Google Scholar]
  • 15.AHN J H, DAVIS E S, DAUGIRD T A, et al Phase separation drives aberrant chromatin looping and cancer development. Nature. 2021;595(7868):591–595. doi: 10.1038/s41586-021-03662-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.TRCEK T, LEHMANN R Germ granules in Drosophila. Traffic. 2019;20(9):650–660. doi: 10.1111/tra.12674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science. 2009;324(5935):1729–1732. doi: 10.1126/science.1172046. [DOI] [PubMed] [Google Scholar]
  • 18.LAFONTAINE D, RIBACK J A, BASCETIN R, et al The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol. 2021;22(3):165–182. doi: 10.1038/s41580-020-0272-6. [DOI] [PubMed] [Google Scholar]
  • 19.BERRY J, WEBER S C, VAIDYA N, et al RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci U S A. 2015;112(38):E5237–5245. doi: 10.1073/pnas.1509317112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.FALAHATI H, PELHAM-WEBB B, BLYTHE S, et al Nucleation by rRNA dictates the precision of nucleolus assembly. Curr Biol. 2016;26(3):277–285. doi: 10.1016/j.cub.2015.11.065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.ZATSEPINA O, BALY C, CHEBROUT M, et al The step-wise assembly of a functional nucleolus in preimplantation mouse embryos involves the cajal (coiled) body. Dev Biol. 2003;253(1):66–83. doi: 10.1006/dbio.2002.0865. [DOI] [PubMed] [Google Scholar]
  • 22.MACHYNA M, HEYN P, NEUGEBAUER K M Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA. 2013;4(1):17–34. doi: 10.1002/wrna.1139. [DOI] [PubMed] [Google Scholar]
  • 23.HEYN P, SALMONOWICZ H, RODENFELS J, et al Activation of transcription enforces the formation of distinct nuclear bodies in zebrafish embryos. RNA Biol. 2017;14(6):752–760. doi: 10.1080/15476286.2016.1255397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.STRZELECKA M, OATES A C, NEUGEBAUER K M Dynamic control of Cajal body number during zebrafish embryogenesis. Nucleus. 2010;1(1):96–108. doi: 10.4161/nucl.1.1.10680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.TATOMER D C, TERZO E, CURRY K P, et al Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J Cell Biol. 2016;213(5):557–570. doi: 10.1083/jcb.201504043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.DODSON A E, KENNEDY S Phase separation in germ cells and development. Dev Cell. 2020;55(1):4–17. doi: 10.1016/j.devcel.2020.09.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.BONTEMS F, STEIN A, MARLOW F, et al Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol. 2009;19(5):414–422. doi: 10.1016/j.cub.2009.01.038. [DOI] [PubMed] [Google Scholar]
  • 28.MARLOW F L, MULLINS M C Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish. Dev Biol. 2008;321(1):40–50. doi: 10.1016/j.ydbio.2008.05.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.SCHUMACHER B, POTHOF J, VIJG J, et al The central role of DNA damage in the ageing process. Nature. 2021;592(7856):695–703. doi: 10.1038/s41586-021-03307-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.SHOJI M, TANAKA T, HOSOKAWA M, et al The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell. 2009;17(6):775–787. doi: 10.1016/j.devcel.2009.10.012. [DOI] [PubMed] [Google Scholar]
  • 31.ARAVIN A A, Van Der HEIJDEN G W, CASTAÑEDA J, et al Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet. 2009;5(12):e1000764. doi: 10.1371/journal.pgen.1000764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.DANESHVAR K, ARDEHALI M B, KLEIN I A, et al lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation. Nat Cell Biol. 2020;22(10):1211–1222. doi: 10.1038/s41556-020-0572-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.KUANG J, ZHAI Z, LI P, et al SS18 regulates pluripotent-somatic transition through phase separation. Nat Commun. 2021;12(1):4090. doi: 10.1038/s41467-021-24373-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.RODEN C, GLADFELTER A S RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol. 2021;22(3):183–195. doi: 10.1038/s41580-020-0264-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.QUINODOZ S A, JACHOWICZ J W, BHAT P, et al RNA promotes the formation of spatial compartments in the nucleus. Cell. 2021;184(23):5775–5790.e30. doi: 10.1016/j.cell.2021.10.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.TAKAHASHI K, YAMANAKA S Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024. [DOI] [PubMed] [Google Scholar]
  • 37.WANG J, YU H, MA Q, et al Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell. 2021;28(10):1868–1883.e11. doi: 10.1016/j.stem.2021.04.023. [DOI] [PubMed] [Google Scholar]
  • 38.Di GIAMMARTINO D C, KLOETGEN A, POLYZOS A, et al KLF4 is involved in the organization and regulation of pluripotency-associated three-dimensional enhancer networks. Nat Cell Biol. 2019;21(10):1179–1190. doi: 10.1038/s41556-019-0390-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.NARITA M, NŨNEZ S, HEARD E, et al Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113(6):703–716. doi: 10.1016/s0092-8674(03)00401-x. [DOI] [PubMed] [Google Scholar]
  • 40.SATI S, BONEV B, SZABO Q, et al 4D genome rewiring during oncogene-induced and replicative senescence. Mol Cell. 2020;78(3):522–538.e9. doi: 10.1016/j.molcel.2020.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.ODA T, GOTOH N, KASAMATSU T, et al DNA damage-induced cellular senescence is regulated by 53BP1 accumulation in the nuclear foci and phase separation. Cell Prolif. 2023;56(6):e13398. doi: 10.1111/cpr.13398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.SAMIR P, KESAVARDHANA S, PATMORE D M, et al DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature. 2019;573(7775):590–594. doi: 10.1038/s41586-019-1551-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.SAMIR P, KANNEGANTI T D DDX3X sits at the crossroads of liquid-liquid and prionoid phase transitions arbitrating life and death cell fate decisions in stressed cells. DNA Cell Biol. 2020;39(7):1091–1095. doi: 10.1089/dna.2020.5616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.LIU H Phase separation and cell fate in Candida. Nat Microbiol. 2020;5(11):1314–1315. doi: 10.1038/s41564-020-00803-w. [DOI] [PubMed] [Google Scholar]
  • 45.FRAZER C, STAPLES M I, KIM Y, et al Epigenetic cell fate in Candida albicans is controlled by transcription factor condensates acting at super-enhancer-like elements. Nat Microbiol. 2020;5(11):1374–1389. doi: 10.1038/s41564-020-0760-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.JUCKER M, WALKER L C Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature. 2013;501(7465):45–51. doi: 10.1038/nature12481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.SPILLANTINI M G, SCHMIDT M L, LEE V M, et al Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839–840. doi: 10.1038/42166. [DOI] [PubMed] [Google Scholar]
  • 48.PESKETT T R, RAU F, O'DRISCOLL J, et al A liquid to solid phase transition underlying pathological huntingtin exon1 aggregation. Mol Cell. 2018;70(4):588–601.e6. doi: 10.1016/j.molcel.2018.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.AULAS A, VANDE VELDE C Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS. Front Cell Neurosci. 2015;9:423. doi: 10.3389/fncel.2015.00423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.ELBAUM-GARFINKLE S Matter over mind: liquid phase separation and neurodegeneration. J Biol Chem. 2019;294(18):7160–7168. doi: 10.1074/jbc.REV118.001188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.DOLNIK O, GERRESHEIM G K, BIEDENKOPF N New perspectives on the biogenesis of viral inclusion bodies in negative-sense RNA virus infections. Cells. 2021;10(6):1460. doi: 10.3390/cells10061460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.CHARMAN M, WEITZMAN M D Replication compartments of DNA viruses in the nucleus: location, location, location. Viruses. 2020;12(2):151. doi: 10.3390/v12020151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.JOBE F, SIMPSON J, HAWES P, et al Respiratory syncytial virus sequesters NF-κB subunit p65 to cytoplasmic inclusion bodies to inhibit innate immune signaling. J Virol. 2020;94(22):e01380–01320. doi: 10.1128/JVI.01380-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.DINH P X, BEURA L K, DAS P B, et al Induction of stress granule-like structures in vesicular stomatitis virus-infected cells. J Virol. 2013;87(1):372–383. doi: 10.1128/JVI.02305-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.FRICKE J, KOO L Y, BROWN C R, et al p38 and OGT sequestration into viral inclusion bodies in cells infected with human respiratory syncytial virus suppresses MK2 activities and stress granule assembly. J Virol. 2013;87(3):1333–1347. doi: 10.1128/JVI.02263-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.LARSON J D, KASPER L H, PAUGH B S, et al Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression. Cancer Cell. 2019;35(1):140–155.e7. doi: 10.1016/j.ccell.2018.11.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.LU C, JAIN S U, HOELPER D, et al Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science. 2016;352(6287):844–849. doi: 10.1126/science.aac7272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.MANSOUR M R, ABRAHAM B J, ANDERS L, et al Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;346(6215):1373–1377. doi: 10.1126/science.1259037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.BASU S, MACKOWIAK S D, NISKANEN H, et al Unblending of transcriptional condensates in human repeat expansion disease. Cell. 2020;181(5):1062–1079.e30. doi: 10.1016/j.cell.2020.04.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.FASCIANI A, D'ANNUNZIO S, POLI V, et al MLL4-associated condensates counterbalance polycomb-mediated nuclear mechanical stress in Kabuki syndrome. Nat Genet. 2020;52(12):1397–1411. doi: 10.1038/s41588-020-00724-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.WANG L, HU M, ZUO M Q, et al Rett syndrome-causing mutations compromise MeCP2-mediated liquid-liquid phase separation of chromatin. Cell Res. 2020;30(5):393–407. doi: 10.1038/s41422-020-0288-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.BERG T, COHEN S B, DESHARNAIS J, et al Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 2002;99(6):3830–3835. doi: 10.1073/pnas.062036999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.ERKIZAN H V, KONG Y, MERCHANT M, et al A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nat Med. 2009;15(7):750–756. doi: 10.1038/nm.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.ZHU G, XIE J, FU Z, et al Pharmacological inhibition of SRC-1 phase separation suppresses YAP oncogenic transcription activity. Cell Res. 2021;31(9):1028–1031. doi: 10.1038/s41422-021-00504-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.GUPTA N, BADEAUX M, LIU Y, et al Stress granule-associated protein G3BP2 regulates breast tumor initiation. Proc Natl Acad Sci U S A. 2017;114(5):1033–1038. doi: 10.1073/pnas.1525387114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.LIU J, XIE Y, GUO J, et al Targeting NSD2-mediated SRC-3 liquid-liquid phase separation sensitizes bortezomib treatment in multiple myeloma. Nat Commun. 2021;12(1):1022. doi: 10.1038/s41467-021-21386-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.SINGATULINA A S, HAMON L, SUKHANOVA M V, et al PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA. Cell Rep. 2019;27(6):1809–1821.e5. doi: 10.1016/j.celrep.2019.04.031. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)

RESOURCES