Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Sep;91(1):48–53. doi: 10.1104/pp.91.1.48

Cell Walls of Tobacco Cells and Changes in Composition Associated with Reduced Growth upon Adaptation to Water and Saline Stress 1

Naim M Iraki 1,2,2, Narendra Singh 1,2,3, Ray A Bressan 1,2, Nicholas C Carpita 1,2
PMCID: PMC1061950  PMID: 16667041

Abstract

The relative mass of the cell walls of tobacco (Nicotiana tabacum L.) cells adapted to grow in medium containing 30% polyethylene glycol 8000 or 428 millimolar NaCl was reduced to about 50% of that of the walls of unadapted cells. Cellulose synthesis was inhibited substantially in adapted cells. The proportions of total pectin in walls of unadapted and adapted cells were about the same, but substantial amount of uronic acid-rich material from walls of cells adapted to either NaCl or polyethylene glycol was more easily extracted with cold sodium ethylenediamine tetraacetic acid solutions (NM Iraki et al. [1989] Plant Physiol. 91: 39-47). We examined the linkage composition of the pectic and hemicellulosic polysaccharides to ascertain chemical factors that may explain this difference in physical behavior. Adaptation to stress resulted in the formation of a loosely bound shell of polygalacturonic acid and rhamnogalacturonan. Pectins extracted from walls of adapted cells by either cold sodium ethylenediamine tetraacetic acid or hot ammonium oxalate were particularly enriched in rhamnose. Compared to pectins of unadapted cells, rhamnosyl units of the rhamnogalacturonans of adapted cells were more highly substituted with polymers containing arabinose and galactose, but the side groups were of greatly reduced molecular size. Possible functional roles of these modifications in cell wall metabolism related to adaptation to osmotic stress are discussed.

Full text

PDF
48

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binzel M. L., Hasegawa P. M., Handa A. K., Bressan R. A. Adaptation of Tobacco Cells to NaCl. Plant Physiol. 1985 Sep;79(1):118–125. doi: 10.1104/pp.79.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Binzel M. L., Hasegawa P. M., Rhodes D., Handa S., Handa A. K., Bressan R. A. Solute Accumulation in Tobacco Cells Adapted to NaCl. Plant Physiol. 1987 Aug;84(4):1408–1415. doi: 10.1104/pp.84.4.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Bressan R. A., Handa A. K., Handa S., Hasegawa P. M. Growth and water relations of cultured tomato cells after adjustment to low external water potentials. Plant Physiol. 1982 Nov;70(5):1303–1309. doi: 10.1104/pp.70.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Galambos J. T. The reaction of carbazole with carbohydrates. I. Effect of borate and sulfamate on the carbazole color of sugars. Anal Biochem. 1967 Apr;19(1):119–132. doi: 10.1016/0003-2697(67)90141-8. [DOI] [PubMed] [Google Scholar]
  6. HAKOMORI S. A RAPID PERMETHYLATION OF GLYCOLIPID, AND POLYSACCHARIDE CATALYZED BY METHYLSULFINYL CARBANION IN DIMETHYL SULFOXIDE. J Biochem. 1964 Feb;55:205–208. [PubMed] [Google Scholar]
  7. Handa S., Bressan R. A., Handa A. K., Carpita N. C., Hasegawa P. M. Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol. 1983 Nov;73(3):834–843. doi: 10.1104/pp.73.3.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayashi T., Marsden M. P., Delmer D. P. Pea Xyloglucan and Cellulose: VI. Xyloglucan-Cellulose Interactions in Vitro and in Vivo. Plant Physiol. 1987 Feb;83(2):384–389. doi: 10.1104/pp.83.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iraki N. M., Bressan R. A., Carpita N. C. Extracellular polysaccharides and proteins of tobacco cell cultures and changes in composition associated with growth-limiting adaptation to water and saline stress. Plant Physiol. 1989 Sep;91(1):54–61. doi: 10.1104/pp.91.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Iraki N. M., Bressan R. A., Hasegawa P. M., Carpita N. C. Alteration of the physical and chemical structure of the primary cell wall of growth-limited plant cells adapted to osmotic stress. Plant Physiol. 1989 Sep;91(1):39–47. doi: 10.1104/pp.91.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moustacas A. M., Nari J., Diamantidis G., Noat G., Crasnier M., Borel M., Ricard J. Electrostatic effects and the dynamics of enzyme reactions at the surface of plant cells. 2. The role of pectin methyl esterase in the modulation of electrostatic effects in soybean cell walls. Eur J Biochem. 1986 Feb 17;155(1):191–197. doi: 10.1111/j.1432-1033.1986.tb09476.x. [DOI] [PubMed] [Google Scholar]
  12. Nari J., Noat G., Diamantidis G., Woudstra M., Ricard J. Electrostatic effects and the dynamics of enzyme reactions at the surface of plant cells. 3. Interplay between limited cell-wall autolysis, pectin methyl esterase activity and electrostatic effects in soybean cell walls. Eur J Biochem. 1986 Feb 17;155(1):199–202. doi: 10.1111/j.1432-1033.1986.tb09477.x. [DOI] [PubMed] [Google Scholar]
  13. Taylor R. L., Conrad H. E. Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups. Biochemistry. 1972 Apr 11;11(8):1383–1388. doi: 10.1021/bi00758a009. [DOI] [PubMed] [Google Scholar]
  14. Termaat A., Passioura J. B., Munns R. Shoot Turgor Does Not Limit Shoot Growth of NaCl-Affected Wheat and Barley. Plant Physiol. 1985 Apr;77(4):869–872. doi: 10.1104/pp.77.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Terry M. E., Jones R. L. Soluble Cell Wall Polysaccharides Released from Pea Stems by Centrifugation : I. EFFECT OF AUXIN. Plant Physiol. 1981 Sep;68(3):531–537. doi: 10.1104/pp.68.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES