Abstract
The mechanism of ozone-mediated plant injury is not known but has been postulated to involve oxygen free radicals. Hydroxyl free radicals react with DNA causing formation of many products, one of which is 8-hydroxyguanine. By using high performance liquid chromatography with electrochemical detection, the 8-hydroxy-2′-deoxyguanosine (8-OHdG) content of a DNA enzymatic digest can be sensitively quantitated. Beans (Phaseolus vulgaris L.) and peas (Pisum sativum L.) were treated with an ozone regime that caused acute injury. Chloroplast DNA was obtained from plants harvested either immediately after ozone treatment or 24 hours later. Ozone-exposed plants in general had nearly two-fold higher levels of 8-OHdG as compared to control plants. In vitro treatment of DNA in buffer solution with ozone did not cause formation of 8-OHdG in DNA, even though ozone did react directly with the macromolecule per se. Exposure of isolated, illuminated chloroplasts to ozone caused nearly a seven-fold increase in the amount of 8-OHdG in the chloroplast DNA as compared to none-ozone-exposed chloroplasts. These results suggest that ozone exposure to plants causes formation of enhanced levels of oxygen free radicals, thus mediating formation of 8-OHdG in chloroplast DNA. The reaction of ozone with DNA per se did not cause formation of 8-OHdG. Therefore, it is the interaction of ozone with plant cells and isolated chloroplasts which mediates oxygen free radical formation.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beland F. A., Dooley K. L., Casciano D. A. Rapid isolation of carcinogen-bound DNA and RNA by hydroxyapatite chromatography. J Chromatogr. 1979 Jun 1;174(1):177–186. doi: 10.1016/s0021-9673(00)87048-x. [DOI] [PubMed] [Google Scholar]
- Boffey S. A., Leech R. M. Chloroplast DNA levels and the control of chloroplast division in light-grown wheat leaves. Plant Physiol. 1982 Jun;69(6):1387–1391. doi: 10.1104/pp.69.6.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHRISTENSEN E., GIESE A. C. Changes in absorption spectra of nucleic acids and their derivatives following exposure to ozone and ultraviolet radiations. Arch Biochem Biophys. 1954 Jul;51(1):208–216. doi: 10.1016/0003-9861(54)90468-3. [DOI] [PubMed] [Google Scholar]
- Cline K., Andrews J., Mersey B., Newcomb E. H., Keegstra K. Separation and characterization of inner and outer envelope membranes of pea chloroplasts. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3595–3599. doi: 10.1073/pnas.78.6.3595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Floyd R. A., Henderson R., Watson J. J., Wong P. K. Use of salicylate with high pressure liquid chromatography and electrochemical detection (LCED) as a sensitive measure of hydroxyl free radicals in adriamycin treated rats. J Free Radic Biol Med. 1986;2(1):13–18. doi: 10.1016/0748-5514(86)90118-2. [DOI] [PubMed] [Google Scholar]
- Floyd R. A., Watson J. J., Harris J., West M., Wong P. K. Formation of 8-hydroxydeoxyguanosine, hydroxyl free radical adduct of DNA in granulocytes exposed to the tumor promoter, tetradecanoylphorbolacetate. Biochem Biophys Res Commun. 1986 Jun 13;137(2):841–846. doi: 10.1016/0006-291x(86)91156-3. [DOI] [PubMed] [Google Scholar]
- Floyd R. A., Watson J. J., Wong P. K., Altmiller D. H., Rickard R. C. Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic Res Commun. 1986;1(3):163–172. doi: 10.3109/10715768609083148. [DOI] [PubMed] [Google Scholar]
- Floyd R. A., Watson J. J., Wong P. K. Sensitive assay of hydroxyl free radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. J Biochem Biophys Methods. 1984 Dec;10(3-4):221–235. doi: 10.1016/0165-022x(84)90042-3. [DOI] [PubMed] [Google Scholar]
- Floyd R. A., West M. S., Eneff K. L., Hogsett W. E., Tingey D. T. Hydroxyl free radical mediated formation of 8-hydroxyguanine in isolated DNA. Arch Biochem Biophys. 1988 Apr;262(1):266–272. doi: 10.1016/0003-9861(88)90188-9. [DOI] [PubMed] [Google Scholar]
- Grimes H. D., Perkins K. K., Boss W. F. Ozone Degrades into Hydroxyl Radical under Physiological Conditions : A Spin Trapping Study. Plant Physiol. 1983 Aug;72(4):1016–1020. doi: 10.1104/pp.72.4.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gupta R. C., Dighe N. R., Randerath K., Smith H. C. Distribution of initial and persistent 2-acetylaminofluorene-induced DNA adducts within DNA loops. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6605–6608. doi: 10.1073/pnas.82.19.6605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasai H., Crain P. F., Kuchino Y., Nishimura S., Ootsuyama A., Tanooka H. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis. 1986 Nov;7(11):1849–1851. doi: 10.1093/carcin/7.11.1849. [DOI] [PubMed] [Google Scholar]
- Kasai H., Nishimura S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res. 1984 Feb 24;12(4):2137–2145. doi: 10.1093/nar/12.4.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasai H., Nishimura S., Kurokawa Y., Hayashi Y. Oral administration of the renal carcinogen, potassium bromate, specifically produces 8-hydroxydeoxyguanosine in rat target organ DNA. Carcinogenesis. 1987 Dec;8(12):1959–1961. doi: 10.1093/carcin/8.12.1959. [DOI] [PubMed] [Google Scholar]
- Kuchino Y., Mori F., Kasai H., Inoue H., Iwai S., Miura K., Ohtsuka E., Nishimura S. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature. 1987 May 7;327(6117):77–79. doi: 10.1038/327077a0. [DOI] [PubMed] [Google Scholar]
- Lebherz H. G., Leadbetter M. M., Bradshaw R. A. Isolation and characterization of the cytosolic and chloroplast forms of spinach leaf fructose diphosphate aldolase. J Biol Chem. 1984 Jan 25;259(2):1011–1017. [PubMed] [Google Scholar]
- Olszyk D. M., Tingey D. T. Metabolic Basis for Injury to Plants from Combinations of O(3) and SO(2): Studies with Modifiers of Pollutant Toxicity. Plant Physiol. 1985 Apr;77(4):935–939. doi: 10.1104/pp.77.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olszyk D. M., Tingey D. T. Phytotoxicity of Air Pollutants: Evidence for the Photodetoxification of SO(2) but Not O(3). Plant Physiol. 1984 Apr;74(4):999–1005. doi: 10.1104/pp.74.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer J. D. Physical and gene mapping of chloroplast DNA from Atriplex triangularis and Cucumis sativa. Nucleic Acids Res. 1982 Mar 11;10(5):1593–1605. doi: 10.1093/nar/10.5.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richter C., Park J. W., Ames B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]