Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1989 Oct;91(2):749–755. doi: 10.1104/pp.91.2.749

Short-Term Metabolite Changes during Transient Ammonium Assimilation by the N-Limited Green Alga Selenastrum minutum1

Ronald G Smith 1,2, Greg C Vanlerberghe 1,2, Mark Stitt 1,2, David H Turpin 1,2
PMCID: PMC1062066  PMID: 16667095

Abstract

In this study, we measured the total pool sizes of key cellular metabolites from nitrogen-limited cells of Selenastrum minutum before and during ammonium assimilation in the light. This was carried out to identify the sites at which N assimilation is acting to regulate carbon metabolism. Over 120 seconds following NH4+ addition we found that: (a) N accumulated in glutamine while glutamate and α-ketoglutarate levels fell; (b) ATP levels declined within 5 seconds and recovered within 30 seconds of NH4+ addition; (c) ratios of pyruvate/phosphoenolpyruvate, malate/phosphoenolpyruvate, Glc-1-P/Glc-6-P and Fru-1,6-bisphosphate/Fru-6-P increased; and (d) as previously seen, photosynthetic carbon fixation was inhibited. Further, we monitored starch degradation during N assimilation over a longer time course and found that starch breakdown occurred at a rate of about 110 micromoles glucose per milligram chlorophyll per hour. The results are consistent with N assimilation occurring through glutamine synthetase/glutamate synthase at the expense of carbon previously stored as starch. They also indicate that regulation of several enzymes is involved in the shift in metabolism from photosynthetic carbon assimilation to carbohydrate oxidation during N assimilation. It seems likely that pyruvate kinase, phosphoenolpyruvate carboxylase, and starch degradation are all activated, whereas key Calvin cycle enzyme(s) are inactivated within seconds of NH4+ addition to N-limited S. minutum cells. The rapid changes in glutamate and triose phosphate, recently shown to be regulators of cytosolic pyruvate kinase, are consistent with them contributing to the short-term activation of this enzyme.

Full text

PDF
750

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Elrifi I. R., Holmes J. J., Weger H. G., Mayo W. P., Turpin D. H. RuBP Limitation of Photosynthetic Carbon Fixation during NH(3) Assimilation : Interactions between Photosynthesis, Respiration, and Ammonium Assimilation in N-Limited Green Algae. Plant Physiol. 1988 Jun;87(2):395–401. doi: 10.1104/pp.87.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Elrifi I. R., Turpin D. H. Nitrate and Ammonium Induced Photosynthetic Suppression in N-Limited Selenastrum minutum. Plant Physiol. 1986 May;81(1):273–279. doi: 10.1104/pp.81.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elrifi I. R., Turpin D. H. The Path of Carbon Flow during NO(3)-Induced Photosynthetic Suppression in N-Limited Selenastrum minutum. Plant Physiol. 1987 Jan;83(1):97–104. doi: 10.1104/pp.83.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guy R. D., Vanlerberghe G. C., Turpin D. H. Significance of Phosphoenolpyruvate Carboxylase during Ammonium Assimilation: Carbon Isotope Discrimination in Photosynthesis and Respiration by the N-Limited Green Alga Selenastrum minutum. Plant Physiol. 1989 Apr;89(4):1150–1157. doi: 10.1104/pp.89.4.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kanazawa T., Kanazawa K., Kirk M. R., Bassham J. A. Regulatory effects of ammonia on carbon metabolism in Chlorella pyrenoidosa during photosynthesis and respiration. Biochim Biophys Acta. 1972 Mar 16;256(3):656–669. doi: 10.1016/0005-2728(72)90201-0. [DOI] [PubMed] [Google Scholar]
  6. Kanazawa T., Kirk M. R., Bassham J. A. Regulatory effects of ammonia on carbon metabolism in photosynthesizing Chlorella pyrenoidosa. Biochim Biophys Acta. 1970 Jun 30;205(3):401–408. doi: 10.1016/0005-2728(70)90106-4. [DOI] [PubMed] [Google Scholar]
  7. Lin M., Turpin D. H., Plaxton W. C. Pyruvate kinase isozymes from the green alga, Selenastrum minutum. I. Purification and physical and immunological characterization. Arch Biochem Biophys. 1989 Feb 15;269(1):219–227. doi: 10.1016/0003-9861(89)90103-3. [DOI] [PubMed] [Google Scholar]
  8. Lin M., Turpin D. H., Plaxton W. C. Pyruvate kinase isozymes from the green alga, Selenastrum minutum. II. Kinetic and regulatory properties. Arch Biochem Biophys. 1989 Feb 15;269(1):228–238. doi: 10.1016/0003-9861(89)90104-5. [DOI] [PubMed] [Google Scholar]
  9. Nakamura Y., Imamura M. Regulation of ADP-Glucose Pyrophosphorylase from Chlorella vulgaris. Plant Physiol. 1985 Jul;78(3):601–605. doi: 10.1104/pp.78.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ohmori M., Hattori A. Transient change in the ATP pool of Anabaena cylindrica associated with ammonia assimilation. Arch Microbiol. 1978 Apr 27;117(1):17–20. doi: 10.1007/BF00689345. [DOI] [PubMed] [Google Scholar]
  11. Platt S. G. Ammonia regulation of carbon metabolism in photosynthesizing leaf discs. Plant Physiol. 1977 Nov;60(5):739–742. doi: 10.1104/pp.60.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sicher R. C. Evidence for a light dependent increase of phosphoglucomutase activity in isolated, intact spinach chloroplasts. Plant Physiol. 1989 Feb;89(2):557–563. doi: 10.1104/pp.89.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Turpin D. H., Weger H. G. Steady-State Chlorophyll a Fluorescence Transients during Ammonium Assimilation by the N-Limited Green Alga Selenastrum minutum. Plant Physiol. 1988 Sep;88(1):97–101. doi: 10.1104/pp.88.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Weger H. G., Birch D. G., Elrifi I. R., Turpin D. H. Ammonium Assimilation Requires Mitochondrial Respiration in the Light : A Study with the Green Alga Selenastrum minutum. Plant Physiol. 1988 Mar;86(3):688–692. doi: 10.1104/pp.86.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weger H. G., Turpin D. H. Mitochondrial Respiration Can Support NO(3) and NO(2) Reduction during Photosynthesis : Interactions between Photosynthesis, Respiration, and N Assimilation in the N-Limited Green Alga Selenastrum minutum. Plant Physiol. 1989 Feb;89(2):409–415. doi: 10.1104/pp.89.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wirtz W., Stitt M., Heldt H. W. Enzymic determination of metabolites in the subcellular compartments of spinach protoplasts. Plant Physiol. 1980 Jul;66(1):187–193. doi: 10.1104/pp.66.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES