Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1990 Mar;92(3):703–709. doi: 10.1104/pp.92.3.703

Characterization of α-Amylase-Inhibitor, a Lectin-Like Protein in the Seeds of Phaseolus vulgaris1

Joaquin Moreno 1,2, Teresa Altabella 1, Maarten J Chrispeels 1
PMCID: PMC1062357  PMID: 16667338

Abstract

The common bean, Phaseolus vulgaris, contains a glycoprotein that inhibits the activity of mammalian and insect α-amylases, but not of plant α-amylases. It is therefore classified as an antifeedant or seed defense protein. In P. vulgaris cv Greensleeves, α-amylase inhibitor (αAl) is present in embryonic axes and cotyledons, but not in other organs of the plant. The protein is synthesized during the same time period that phaseolin and phytohemagglutinin are made and also accumulates in the protein storage vacuoles (protein bodies). Purified αAl can be resolved by SDS-PAGE into five bands (Mr 15,000-19,000), four of which have covalently attached glycans. These bands represent glycoforms of two different polypeptides. All the glycoforms have complex glycans that are resistant to removal by endoglycosidase H, indicating transport of the protein through the Golgi apparatus. The two different polypeptides correspond to the N-terminal and C-terminal halves of a lectin-like protein encoded by an already identified gene or a gene closely related to it (LM Hoffman [1984] J Mol Appl Genet 2: 447-453; J Moreno, MJ Chrispeels [1989] Proc Natl Acad Sci USA 86:7885-7889). The primary translation product of αAl is a polypeptide of Mr 28,000. Immunologically cross-reacting glycopolypeptides of Mr 30,000 to 35,000 are present in the endoplasmic reticulum, while the smaller polypeptides (Mr 15,000-19,000) accumulate in protein storage vacuoles (protein bodies). Together these data indicate that αAl is a typical bean lectin-type protein that is synthesized on the rough endoplasmlc reticulum, modified in the Golgi, and transported to the protein storage vacuoles.

Full text

PDF
705

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  2. Carrington D. M., Auffret A., Hanke D. E. Polypeptide ligation occurs during post-translational modification of concanavalin A. Nature. 1985 Jan 3;313(5997):64–67. doi: 10.1038/313064a0. [DOI] [PubMed] [Google Scholar]
  3. Chrispeels M. J., Higgins T. J., Spencer D. Assembly of storage protein oligomers in the endoplasmic reticulum and processing of the polypeptides in the protein bodies of developing pea cotyledons. J Cell Biol. 1982 May;93(2):306–313. doi: 10.1083/jcb.93.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edge A. S., Faltynek C. R., Hof L., Reichert L. E., Jr, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal Biochem. 1981 Nov 15;118(1):131–137. doi: 10.1016/0003-2697(81)90168-8. [DOI] [PubMed] [Google Scholar]
  5. Hager D. A., Burgess R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem. 1980 Nov 15;109(1):76–86. doi: 10.1016/0003-2697(80)90013-5. [DOI] [PubMed] [Google Scholar]
  6. Hoffman L. M., Ma Y., Barker R. F. Molecular cloning of Phaseolus vulgaris lectin mRNA and use of cDNA as a probe to estimate lectin transcript levels in various tissues. Nucleic Acids Res. 1982 Dec 11;10(23):7819–7828. doi: 10.1093/nar/10.23.7819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jackson R. J., Hunt T. Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 1983;96:50–74. doi: 10.1016/s0076-6879(83)96008-1. [DOI] [PubMed] [Google Scholar]
  8. Janzen D. H., Juster H. B., Liener I. E. Insecticidal action of the phytohemagglutinin in black beans on a bruchid beetle. Science. 1976 May 21;192(4241):795–796. doi: 10.1126/science.1265481. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Marshall J. J., Lauda C. M. Purification and properties of phaseolamin, an inhibitor of alpha-amylase, from the kidney bean, Phaseolus vulgaris. J Biol Chem. 1975 Oct 25;250(20):8030–8037. [PubMed] [Google Scholar]
  12. Moreno J., Chrispeels M. J. A lectin gene encodes the alpha-amylase inhibitor of the common bean. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7885–7889. doi: 10.1073/pnas.86.20.7885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Osborni T. C., Alexander D. C., Sun S. S., Cardona C., Bliss F. A. Insecticidal activity and lectin homology of arcelin seed protein. Science. 1988 Apr 8;240(4849):207–210. doi: 10.1126/science.240.4849.207. [DOI] [PubMed] [Google Scholar]
  14. Pick K. H., Wöber G. Proteinaceous alpha-amylase inhibitor from beans (Phaseolus vulgaris). Purification and partial characterization. Hoppe Seylers Z Physiol Chem. 1978 Oct;359(10):1371–1377. doi: 10.1515/bchm2.1978.359.2.1371. [DOI] [PubMed] [Google Scholar]
  15. Sturm A., Van Kuik J. A., Vliegenthart J. F., Chrispeels M. J. Structure, position, and biosynthesis of the high mannose and the complex oligosaccharide side chains of the bean storage protein phaseolin. J Biol Chem. 1987 Oct 5;262(28):13392–13403. [PubMed] [Google Scholar]
  16. Trimble R. B., Maley F. Optimizing hydrolysis of N-linked high-mannose oligosaccharides by endo-beta-N-acetylglucosaminidase H. Anal Biochem. 1984 Sep;141(2):515–522. doi: 10.1016/0003-2697(84)90080-0. [DOI] [PubMed] [Google Scholar]
  17. Varner J. E., Mense R. M. Characteristics of the process of enzyme release from secretory plant cells. Plant Physiol. 1972 Feb;49(2):187–189. doi: 10.1104/pp.49.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vitale A., Ceriotti A., Bollini R., Chrispeels M. J. Biosynthesis and processing of phytohemagglutinin in developing bean cotyledons. Eur J Biochem. 1984 May 15;141(1):97–104. doi: 10.1111/j.1432-1033.1984.tb08162.x. [DOI] [PubMed] [Google Scholar]
  19. Vitale A., Zoppè M., Fabbrini M. S., Genga A., Rivas L., Bollini R. Synthesis of Lectin-Like Protein in Developing Cotyledons of Normal and Phytohemagglutinin-Deficient Phaseolus vulgaris. Plant Physiol. 1989 Jul;90(3):1015–1021. doi: 10.1104/pp.90.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES