Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1990 Aug;93(4):1426–1432. doi: 10.1104/pp.93.4.1426

Studies of the Uptake of Nitrate in Barley

I. Kinetics of 13NO3 Influx

M Yaeesh Siddiqi 1,2,3, Anthony D M Glass 1,2,3,1, Thomas J Ruth 1,2,3, Thomas W Rufty Jr 1,2,3
PMCID: PMC1062690  PMID: 16667635

Abstract

13NO3 was used to investigate patterns of NO3 influx into roots of barley plants (Hordeum vulgare L. cv Klondike) previously grown with (`induced') or without (`uninduced') a source of external NO3 ([NO3]0). In both induced and uninduced plants, 13NO3 influx was biphasic in the range from 0.005 to 50 moles per cubic meter [NO3]0. In the low concentration range (<1 mole per cubic meter for induced plants and <0.3 mole per cubic meter for uninduced plants), influx was saturable and Vmax and Km values for influx either increased or decreased according to NO3 pretreatment. By contrast, 13NO3 influx in the high concentration range revealed a strictly linear concentration dependence. These fluxes appeared to be mediated by a constitutive, rather than an inducible, transport system.

Full text

PDF
1427

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Deane-Drummond C. E., Glass A. D. Short Term Studies of Nitrate Uptake into Barley Plants Using Ion-Specific Electrodes and ClO(3): I. Control of Net Uptake by NO(3) Efflux. Plant Physiol. 1983 Sep;73(1):100–104. doi: 10.1104/pp.73.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Epstein E., Rains D. W. CARRIER-MEDIATED CATION TRANSPORT IN BARLEY ROOTS: KINETIC EVIDENCE FOR A SPECTRUM OF ACTIVE SITES. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1320–1324. doi: 10.1073/pnas.53.6.1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fett W. F., Dunn M. F. Exopolysaccharides Produced by Phytopathogenic Pseudomonas syringae Pathovars in Infected Leaves of Susceptible Hosts. Plant Physiol. 1989 Jan;89(1):5–9. doi: 10.1104/pp.89.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Glass A. D., Thompson R. G., Bordeleau L. Regulation of NO(3) Influx in Barley : Studies Using NO(3). Plant Physiol. 1985 Feb;77(2):379–381. doi: 10.1104/pp.77.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jackson W. A., Flesher D., Hageman R. H. Nitrate Uptake by Dark-grown Corn Seedlings: Some Characteristics of Apparent Induction. Plant Physiol. 1973 Jan;51(1):120–127. doi: 10.1104/pp.51.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ketchum K. A., Shrier A., Poole R. J. Characterization of potassium-dependent currents in protoplasts of corn suspension cells. Plant Physiol. 1989 Apr;89(4):1184–1192. doi: 10.1104/pp.89.4.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kochian L. V., Lucas W. J. Potassium transport in corn roots : I. Resolution of kinetics into a saturable and linear component. Plant Physiol. 1982 Dec;70(6):1723–1731. doi: 10.1104/pp.70.6.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rao K. P., Rains D. W. Nitrate absorption by barley: I. Kinetics and energetics. Plant Physiol. 1976 Jan;57(1):55–58. doi: 10.1104/pp.57.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Serra J. L., Llama M. J., Cadenas E. Nitrate Utilization by the Diatom Skeletonema costatum: I. Kinetics of Nitrate Uptake. Plant Physiol. 1978 Dec;62(6):987–990. doi: 10.1104/pp.62.6.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Siddiqi M. Y., Glass A. D., Ruth T. J., Fernando M. Studies of the Regulation of Nitrate Influx by Barley Seedlings Using NO(3). Plant Physiol. 1989 Jul;90(3):806–813. doi: 10.1104/pp.90.3.806. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES