Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Feb;77(2):259–265. doi: 10.1104/pp.77.2.259

Ice Nucleation Temperature of Individual Leaves in Relation to Population Sizes of Ice Nucleation Active Bacteria and Frost Injury

Susan S Hirano 1,2, L Stuart Baker 1,2,1, Christen D Upper 1,2
PMCID: PMC1064500  PMID: 16664039

Abstract

Ice nucleation temperatures of individual leaves were determined by a tube nucleation test. With this assay, a direct quantitative relationship was obtained between the temperatures at which ice nucleation occurred on individual oat (Avena sativa L.) leaves and the population sizes of ice nucleation active (INA) bacteria present on those leaves. In the absence of INA bacteria, nucleation of supercooled growth-chamber grown oat leaves did not occur until temperatures were below approximately −5°C. Both nucleation temperature and population size of INA bacteria were determined on the same individual, field-grown oat leaves. Leaves with higher ice nucleation temperatures harbored larger populations of INA bacteria than did leaves with lower nucleation temperatures. Log10 mean populations of INA bacteria per leaf were 5.14 and 3.51 for leaves with nucleation temperatures of −2.5°C and −3.0°C, respectively. Nucleation frequencies (the ratio of ice nuclei to viable cells) of INA bacteria on leaves were lognormally distributed. Strains from two very different collections of Pseudomonas syringae and one of Erwinia herbicola were cultured on nutrient glycerol agar and tested for nucleation frequency at −5°C. Nucleation frequencies of these bacterial strains were also lognormally distributed within each of the three sets. The tube nucleation test was used to determine the frequency with which individual leaves in an oat canopy harbored large populations of INA bacteria throughout the growing season. This test also predicted relative frost hazard to tomato (Lycopersicon esculentum Mill) plants.

Full text

PDF
262

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gross D. C., Cody Y. S., Proebsting E. L., Radamaker G. K., Spotts R. A. Distribution, population dynamics, and characteristics of ice nucleation-active bacteria in deciduous fruit tree orchards. Appl Environ Microbiol. 1983 Dec;46(6):1370–1379. doi: 10.1128/aem.46.6.1370-1379.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hirano S. S., Nordheim E. V., Arny D. C., Upper C. D. Lognormal distribution of epiphytic bacterial populations on leaf surfaces. Appl Environ Microbiol. 1982 Sep;44(3):695–700. doi: 10.1128/aem.44.3.695-700.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  4. KOVACS N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature. 1956 Sep 29;178(4535):703–703. doi: 10.1038/178703a0. [DOI] [PubMed] [Google Scholar]
  5. Kazzi G. M., Gross T. L., Sokol R. J. Fetal biparietal diameter an placental grade: predictors of intrauterine growth retardation. Obstet Gynecol. 1983 Dec;62(6):755–759. [PubMed] [Google Scholar]
  6. Lindow S. E., Arny D. C., Upper C. D. Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiol. 1982 Oct;70(4):1084–1089. doi: 10.1104/pp.70.4.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lindow S. E., Arny D. C., Upper C. D. Distribution of ice nucleation-active bacteria on plants in nature. Appl Environ Microbiol. 1978 Dec;36(6):831–838. doi: 10.1128/aem.36.6.831-838.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lindow S. E., Hirano S. S., Barchet W. R., Arny D. C., Upper C. D. Relationship between Ice Nucleation Frequency of Bacteria and Frost Injury. Plant Physiol. 1982 Oct;70(4):1090–1093. doi: 10.1104/pp.70.4.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maki L. R., Galyan E. L., Chang-Chien M. M., Caldwell D. R. Ice nucleation induced by pseudomonas syringae. Appl Microbiol. 1974 Sep;28(3):456–459. doi: 10.1128/am.28.3.456-459.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rajashekar C. B., Li P. H., Carter J. V. Frost injury and heterogeneous ice nucleation in leaves of tuber-bearing solanum species : ice nucleation activity of external source of nucleants. Plant Physiol. 1983 Apr;71(4):749–755. doi: 10.1104/pp.71.4.749. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES