Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Apr;77(4):801–806. doi: 10.1104/pp.77.4.801

Metabolism of Monoterpenes 1

Evidence for the Function of Monoterpene Catabolism in Peppermint (Mentha piperita) Rhizomes

Rodney Croteau 1, Virendar K Sood 1
PMCID: PMC1064609  PMID: 16664141

Abstract

l-Menthone of peppermint leaves is reduced to d-neomenthol which is glucosylated and transported to the rhizome, whereupon the β-d-glucoside is hydrolyzed, the aglycone oxidized back to l-menthone, and this ketone converted to l-3,4-menthone lactone. l-[G-3H]-3,4-Menthone lactone and its labeled progenitors, when incubated with excised mint rhizomes, gave rise to nonvolatile lipids as well as polar metabolites. The lipids thus generated consisted of labeled squalene and phytosterols in the nonsaponifiable fraction and C14-C26 fatty acids in the saponifiable fraction. These results imply degradation of the terpenoid to acetylcoenzyme A and reduced pyridine nucleotide, and reincorporation of label via these products. Starch and soluble carbohydrates were also found to be labeled; however, chemical degradation of the [3H]glucose obtained on hydrolysis of starch indicated the presence of tritium only on interior carbons, suggesting that labeling had occurred via reduced pyridine nucleotides. Analysis of the labeled organic acids revealed the presence of several hydroxy methylacyl intermediates suggesting the operation of a modified β-oxidation pathway in the degradation of the acyclic terpenoid skeleton. The results indicate that monoterpenes transported to the rhizome are oxidized to yield acetyl-coenzyme A and reduced pyridine nucleotides, and suggest that metabolic turnover of monoterpenes in mint represents a mechanism for recycling carbon and energy from foliar terpenes into other metabolites of the rhizome.

Full text

PDF
804

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooks C. J., Horning E. C., Young J. S. Characterization of sterols by gas chromatography-mass spectrometry of the trimethylsilyl ethers. Lipids. 1968 Sep;3(5):391–402. doi: 10.1007/BF02531277. [DOI] [PubMed] [Google Scholar]
  2. Bugorskii I. S., Reznikova S. A., Zaprometov M. N. O vzaimosviazi gliukozidnosviazannykh i svobodnykh spirtov v protsesse obrazovaniia efirnogo masla v lepestkakh rozy. Biokhimiia. 1979 Jun;44(6):1068–1073. [PubMed] [Google Scholar]
  3. Burbott A. J., Loomis W. D. Evidence for metabolic turnover of monoterpenes in peppermint. Plant Physiol. 1969 Feb;44(2):173–179. doi: 10.1104/pp.44.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHAPMAN P. J., MEERMAN G., GUNSALUS I. C. THE MICROBIOLOGICAL TRANSFORMATION OF FENCHONE. Biochem Biophys Res Commun. 1965 Jun 18;20:104–108. doi: 10.1016/0006-291x(65)90955-1. [DOI] [PubMed] [Google Scholar]
  5. CONRAD H. E., DUBUS R., NAMTVEDT M. J., GUNSALUS I. C. MIXED FUNCTION OXIDATION. II. SEPARATION AND PROPERTIES OF THE ENZYMES CATALYZING CAMPHOR LACTONIZATION. J Biol Chem. 1965 Jan;240:495–503. [PubMed] [Google Scholar]
  6. Cantwell S. G., Lau E. P., Watt D. S., Fall R. R. Biodegradation of acyclic isoprenoids by Pseudomonas species. J Bacteriol. 1978 Aug;135(2):324–333. doi: 10.1128/jb.135.2.324-333.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Croteau R., El-Bialy H., El-Hindawi S. Metabolism of monoterpenes: lactonization of (+)-camphor and conversion of the corresponding hydroxy acid to the glucoside-glucose ester in sage (Salvia officinalis). Arch Biochem Biophys. 1984 Feb 1;228(2):667–680. doi: 10.1016/0003-9861(84)90037-7. [DOI] [PubMed] [Google Scholar]
  8. Croteau R., Hooper C. L. Metabolism of Monoterpenes: Acetylation of (-)-Menthol by a Soluble Enzyme Preparation from Peppermint (Mentha piperita) Leaves. Plant Physiol. 1978 May;61(5):737–742. doi: 10.1104/pp.61.5.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Croteau R., Martinkus C. Metabolism of Monoterpenes: Demonstration of (+)-Neomenthyl-beta-d-Glucoside as a Major Metabolite of (-)-Menthone in Peppermint (Mentha Piperita). Plant Physiol. 1979 Aug;64(2):169–175. doi: 10.1104/pp.64.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Croteau R., Sood V. K., Renstrøm B., Bhushan R. Metabolism of Monoterpenes : Early Steps in the Metabolism of d-Neomenthyl-beta-d-Glucoside in Peppermint (Mentha piperita) Rhizomes. Plant Physiol. 1984 Nov;76(3):647–653. doi: 10.1104/pp.76.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Croteau R., Winters J. N. Demonstration of the Intercellular Compartmentation of l-Menthone Metabolism in Peppermint (Mentha piperita) Leaves. Plant Physiol. 1982 Apr;69(4):975–977. doi: 10.1104/pp.69.4.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Donoghue N. A., Norris D. B., Trudgill P. W. The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871. Eur J Biochem. 1976 Mar 16;63(1):175–192. doi: 10.1111/j.1432-1033.1976.tb10220.x. [DOI] [PubMed] [Google Scholar]
  13. Kjonaas R., Martinkus-Taylor C., Croteau R. Metabolism of Monoterpenes: Conversion of l-Menthone to l-Menthol and d-Neomenthol by Stereospecific Dehydrogenases from Peppermint (Mentha piperita) Leaves. Plant Physiol. 1982 May;69(5):1013–1017. doi: 10.1104/pp.69.5.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Martinkus C., Croteau R. Metabolism of Monoterpenes : EVIDENCE FOR COMPARTMENTATION OF l-MENTHONE METABOLISM IN PEPPERMINT (MENTHA PIPERITA) LEAVES. Plant Physiol. 1981 Jul;68(1):99–106. doi: 10.1104/pp.68.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SEUBERT W., FASS E. UNTERSUCHUNGEN UEBER DEN BAKTERIELLEN ABBAU VON ISOPRENOIDEN. V. DER MECHANISMUS DES ISOPRENOIDABBAUES. Biochem Z. 1964 Dec 7;341:35–44. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES