Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 May;78(1):100–103. doi: 10.1104/pp.78.1.100

Rapid Osmotic Adjustment by a Succulent Halophyte to Saline Shock 1

Irving B McNulty 1
PMCID: PMC1064684  PMID: 16664180

Abstract

The objective of this research was to measure the short term osmotic adjustment of Salicornia europaea L. ssp. rubra (A. Nels) Breitung when suddenly exposed to 100 millimolar NaCl. Plants were grown hydroponically, shocked with 100 millimolar NaCl added to the culture solution, and stem tips analyzed for free inorganic ions and small organic molecules at intervals up to 72 hours. In the first 2 hours, the calculated leaf osmoticum showed a net increase of 158.8 millimolar most of which was free Mg2+ (+135.3 millimolar). Total sugars increased almost 5-fold by the 6th hour, enough to provide sufficient osmoticum for the cytoplasm if only partially confined there. By 24 hours, all measured osmotica had decreased except Na+, Mg2+, Cl, and proline, with the net increase being 208 millimolar. By 72 hours, there was a net gain of 356 millimolar in osmotica of the stem tips, due to Na+ (+233.3 millimolar), Cl (+306.7 millimolar), and a small increase in sugar and proline (+3.5 millimolar), with all other osmotica decreasing in concentration. Compatible osmotica did not change sufficiently to account for osmotic balance between vacuole and cytoplasm; consequently, there must have been a reapportionment of osmotica within the cell in the short time duration of this experiment.

Full text

PDF
102

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Greenway H. Salt responses of enzymes from species differing in salt tolerance. Plant Physiol. 1972 Feb;49(2):256–259. doi: 10.1104/pp.49.2.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Jefferies R. L., Rudmik T., Dillon E. M. Responses of halophytes to high salinities and low water potentials. Plant Physiol. 1979 Dec;64(6):989–994. doi: 10.1104/pp.64.6.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Thom M., Maretzki A., Komor E. Vacuoles from Sugarcane Suspension Cultures : I. ISOLATION AND PARTIAL CHARACTERIZATION. Plant Physiol. 1982 Jun;69(6):1315–1319. doi: 10.1104/pp.69.6.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Wagner G. J. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiol. 1979 Jul;64(1):88–93. doi: 10.1104/pp.64.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES