Abstract
A mechanism by which intact potato (Solanum tuberosum) mitochondria may regulate the matrix NAD content was studied in vitro. If mitochondria were incubated with NAD+ at 25°C in 0.3 molar mannitol, 10 millimolar phosphate buffer (pH 7.4), 5 millimolar MgCl2, and 5 millimolar α-ketoglutarate, the NAD pool size increased with time. In the presence of uncouplers, net uptake was not only inhibited, but NAD+ efflux was observed instead. Furthermore, the rate of NAD+ accumulation in the matrix space was strongly inhibited by the analog N-4-azido-2-nitrophenyl-4-aminobutyryl-3′-NAD+. When suspended in a medium that avoided rupture of the outer membrane, intact purified mitochondria progressively lost their NAD+ content. This led to a slow decrease of NAD+-linked substrates oxidation by isolated mitochondria The rate of NAD+ efflux from the matrix space was strongly temperature dependent and was inhibited by the analog inhibitor of NAD+ transport indicating that a carrier was required for net flux in either direction. It is proposed that uptake and efflux operate to regulate the total matrix NAD pool size.
Full text
PDF![405](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f85a/1064744/fa592438732a/plntphys00589-0203.png)
![406](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f85a/1064744/bbd6df48e49f/plntphys00589-0204.png)
![407](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f85a/1064744/c8a2135c910e/plntphys00589-0205.png)
![408](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f85a/1064744/e14425d87345/plntphys00589-0206.png)
![409](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f85a/1064744/2ab732afc05f/plntphys00589-0207.png)
![410](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f85a/1064744/8dfe83193b61/plntphys00589-0208.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brunton C. J., Palmer J. M. Pathways for the oxidation of malate and reduced pyridine nucleotide by wheat mitochondria. Eur J Biochem. 1973 Nov 1;39(1):283–291. doi: 10.1111/j.1432-1033.1973.tb03125.x. [DOI] [PubMed] [Google Scholar]
- Coleman J. O., Palmer J. M. The oxidation of malate by isolated plant mitochondria. Eur J Biochem. 1972 Apr 24;26(4):499–509. doi: 10.1111/j.1432-1033.1972.tb01792.x. [DOI] [PubMed] [Google Scholar]
- Day D. A., Neuburger M., Douce R., Wiskich J. T. Exogenous NAD Effects on Plant Mitochondria: A Reinvestigation of the Transhydrogenase Hypothesis. Plant Physiol. 1983 Dec;73(4):1024–1027. doi: 10.1104/pp.73.4.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day D. A., Wiskich J. T. The Effect of Exogenous Nicotinamide Adenine Dinucleotide on the Oxidation of Nicotinamide Adenine Dinucleotide-linked Substrates by Isolated Plant Mitochondria. Plant Physiol. 1974 Sep;54(3):360–363. doi: 10.1104/pp.54.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douce R., Bonner W. D., Jr Oxalacetate control of Krebs cycle oxidations in purified plant mitochondria. Biochem Biophys Res Commun. 1972 May 12;47(3):619–624. doi: 10.1016/0006-291x(72)90923-0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Matthews D. E., Gregory P., Gracen V. E. Helminthosporium maydis Race T Toxin Induces Leakage of NAD from T Cytoplasm Corn Mitochondria. Plant Physiol. 1979 Jun;63(6):1149–1153. doi: 10.1104/pp.63.6.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuburger M., Douce R. Slow passive diffusion of NAD+ between intact isolated plant mitochondria and suspending medium. Biochem J. 1983 Nov 15;216(2):443–450. doi: 10.1042/bj2160443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuburger M., Journet E. P., Bligny R., Carde J. P., Douce R. Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll. Arch Biochem Biophys. 1982 Aug;217(1):312–323. doi: 10.1016/0003-9861(82)90507-0. [DOI] [PubMed] [Google Scholar]
- Palmer J. M., Schwitzguébel J. P., Møller I. M. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+. Biochem J. 1982 Dec 15;208(3):703–711. doi: 10.1042/bj2080703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tobin A., Djerdjour B., Journet E., Neuburger M., Douce R. Effect of NAD on Malate Oxidation in Intact Plant Mitochondria. Plant Physiol. 1980 Aug;66(2):225–229. doi: 10.1104/pp.66.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Jagow G., Klingenberg M. Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis. Eur J Biochem. 1970 Feb;12(3):583–592. doi: 10.1111/j.1432-1033.1970.tb00890.x. [DOI] [PubMed] [Google Scholar]