Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Jul;78(3):568–575. doi: 10.1104/pp.78.3.568

Dicyclohexylamine-Induced Shift of Biosynthesis from Spermidine to Spermine in Plant Protoplasts 1

Michael L Greenberg 1,2, Seymour S Cohen 1
PMCID: PMC1064777  PMID: 16664284

Abstract

An improved analytical method, based on high pressure liquid chromatography, has been developed for the simultaneous determination of the polyamines and S-adenosyl-containing compounds in extracts of plant protoplasts. The method involves simple procedures for sample preparation and permits quantification of 1 picomole or less for all the compounds. This method has been used to study the effects of dicyclohexylamine, an inhibitor of plant spermidine synthase (Sindhu, R. K., S. S. Cohen 1984 Plant Physiol 74: 645-649), on biosynthesis of polyamines and 1-aminocyclopropane-1-carboxylate in protoplasts derived from Chinese cabbage leaves. Dicyclohexylamine effectively inhibits spermidine synthase in vivo. Inhibition of the synthesis of spermidine by dicyclohexylamine resulted in a stimulation of spermine synthesis, without significant effect on the synthesis of 1-aminocyclopropane-1-carboxylate. Decarboxylated S-adenosylmethionine is present in control Chinese cabbage protoplasts at ∼10−18 moles per cell, and dicyclohexylamine caused an increase of this metabolite of up to 10-fold in a 4-hour period. The increase in decarboxylated S-adenosylmethionine permitted an increased synthesis of spermine. These findings suggest that the availability of decarboxylated S-adenosylmethionine may be rate-limiting for the synthesis of spermine in plant protoplasts.

Full text

PDF
571

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Yang S. F. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci U S A. 1979 Jan;76(1):170–174. doi: 10.1073/pnas.76.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams D. O., Yang S. F. Methionine metabolism in apple tissue: implication of s-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol. 1977 Dec;60(6):892–896. doi: 10.1104/pp.60.6.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bagni N., Torrigiani P., Barbieri P. Effect of various inhibitors of polyamine synthesis on the growth of Helianthus tuberosus. Med Biol. 1981 Dec;59(5-6):403–409. [PubMed] [Google Scholar]
  5. Cohen S. S., Balint R., Sindhu R. K. The synthesis of polyamines from methionine in intact and disrupted leaf protoplasts of virus-infected chinese cabbage. Plant Physiol. 1981 Nov;68(5):1150–1155. doi: 10.1104/pp.68.5.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen S. S., Greenberg M. L. Spermidine, an intrinsic component of turnip yellow mosaic virus. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5470–5474. doi: 10.1073/pnas.78.9.5470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen S. S., McCormick F. P. Polyamines and virus multiplication. Adv Virus Res. 1979;24:331–387. doi: 10.1016/s0065-3527(08)60397-8. [DOI] [PubMed] [Google Scholar]
  8. Cohen S. S., Morgan S., Streibel E. The polyamine content of the tRNA of E. coli. Proc Natl Acad Sci U S A. 1969 Oct;64(2):669–676. doi: 10.1073/pnas.64.2.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen S. S. What do the polyamines do? Nature. 1978 Jul 20;274(5668):209–210. doi: 10.1038/274209a0. [DOI] [PubMed] [Google Scholar]
  10. Erwin B. G., Bethell D. R., Pegg A. E. Role of polyamines in differentiation of 3T3-L1 fibroblasts into adipocytes. Am J Physiol. 1984 Mar;246(3 Pt 1):C293–C300. doi: 10.1152/ajpcell.1984.246.3.C293. [DOI] [PubMed] [Google Scholar]
  11. Flores H. E., Galston A. W. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 1982 Mar;69(3):701–706. doi: 10.1104/pp.69.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glazer R. I., Peale A. L. Measurement of S-adenosyl-L-methionine levels by SP Sephadex chromatography. Anal Biochem. 1978 Dec;91(2):516–520. doi: 10.1016/0003-2697(78)90538-9. [DOI] [PubMed] [Google Scholar]
  13. Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981;19(1):1–20. doi: 10.1111/j.1432-0436.1981.tb01123.x. [DOI] [PubMed] [Google Scholar]
  14. Lizada M. C., Yang S. F. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem. 1979 Nov 15;100(1):140–145. doi: 10.1016/0003-2697(79)90123-4. [DOI] [PubMed] [Google Scholar]
  15. Pegg A. E., Tang K. C., Coward J. K. Effects of S-adenosyl-1,8-diamino-3-thiooctane on polyamine metabolism. Biochemistry. 1982 Sep 28;21(20):5082–5089. doi: 10.1021/bi00263a036. [DOI] [PubMed] [Google Scholar]
  16. Quigley G. J., Teeter M. M., Rich A. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1978 Jan;75(1):64–68. doi: 10.1073/pnas.75.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Raina A., Cohen S. S. Polyamines and RNA synthesis in a polyauxotrophic strain of E. coli. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1587–1593. doi: 10.1073/pnas.55.6.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Raina A., Tuomi K., Mäntyjärvi R. Roles of polyamines in the replication of animal viruses. Med Biol. 1981 Dec;59(5-6):428–432. [PubMed] [Google Scholar]
  19. Rose K. M., Bell L. E., Siefken D. A., Jacob S. T. A heparin-sensitive nuclear protein kinase. Purification, properties, and increased activity in rat hepatoma relative to liver. J Biol Chem. 1981 Jul 25;256(14):7468–7477. [PubMed] [Google Scholar]
  20. Sindhu R. K., Cohen S. S. Propylamine transferases in chinese cabbage leaves. Plant Physiol. 1984 Mar;74(3):645–649. doi: 10.1104/pp.74.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sugiura M., Shafman T., Mitchell T., Griffin J., Kufe D. Involvement of spermidine in proliferation and differentiation of human promyelocytic leukemia cells. Blood. 1984 May;63(5):1153–1158. [PubMed] [Google Scholar]
  22. Torget R., Lapi L., Cohen S. S. Synthesis and accumulation of polyamines and S-adenosylmethionine in Chinese cabbage infected by turnip yellow mosaic virus. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1132–1139. doi: 10.1016/s0006-291x(79)80025-x. [DOI] [PubMed] [Google Scholar]
  23. Wagner J., Danzin C., Mamont P. Reversed-phase ion-pair liquid chromatographic procedure for the simultaneous analysis of S-adenosylmethionine, its metabolites and the natural polyamines. J Chromatogr. 1982 Feb 12;227(2):349–368. doi: 10.1016/s0378-4347(00)80389-8. [DOI] [PubMed] [Google Scholar]
  24. de Laat A. M., van Loon L. C. Regulation of Ethylene Biosynthesis in Virus-Infected Tobacco Leaves : I. DETERMINATION OF THE ROLE OF METHIONINE AS THE PRECURSOR OF ETHYLENE. Plant Physiol. 1981 Jul;68(1):256–260. doi: 10.1104/pp.68.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES