Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Jul;78(3):642–644. doi: 10.1104/pp.78.3.642

Target Molecular Size of the Red Beet Plasma Membrane ATPase 1

Donald P Briskin 1,2, W Robert Thornley 1,2, Joseph L Roti-Roti 1,2
PMCID: PMC1064791  PMID: 16664298

Abstract

Radiation inactivation of the red beet (Beta vulgaris L.) plasma membrane ATPase was carried out using γ-ray radiation from a 137Cs source. Inactivation of vanadate-sensitive ATPase activity by γ-ray radiation followed an exponential decline with increasing total dose, indicating a single target size calculated to have a molecular weight of about 228,000. Since the catalytic subunit of the red beet plasma membrane ATPase has been demonstrated to have a molecular weight of about 100,000 by dodecyl-sulfate gel electrophoresis following 32P-phosphorylation, it is suggested that the native enzyme may exist, at least, as a dimer of catalytic subunits.

Full text

PDF
643

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beauregard G., Giroux S., Potier M. Target size analysis by radiation inactivation: a large capacity tube rack for irradiation in a Gammacell 220. Anal Biochem. 1983 Jul 15;132(2):362–364. doi: 10.1016/0003-2697(83)90021-0. [DOI] [PubMed] [Google Scholar]
  2. Boyer P. D., Kohlbrenner W. E., McIntosh D. B., Smith L. T., O'Neal C. C. ATP and ADP modulations of catalysis by F1 and Ca2+, Mg2+-ATPases. Ann N Y Acad Sci. 1982;402:65–83. doi: 10.1111/j.1749-6632.1982.tb25732.x. [DOI] [PubMed] [Google Scholar]
  3. Briskin D. P., Leonard R. T. Partial characterization of a phosphorylated intermediate associated with the plasma membrane ATPase of corn roots. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6922–6926. doi: 10.1073/pnas.79.22.6922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Briskin D. P., Poole R. J. Characterization of a k-stimulated adenosine triphosphatase associated with the plasma membrane of red beet. Plant Physiol. 1983 Feb;71(2):350–355. doi: 10.1104/pp.71.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Briskin D. P., Poole R. J. Characterization of the solubilized plasma membrane ATPase of red beet. Plant Physiol. 1984 Sep;76(1):26–30. doi: 10.1104/pp.76.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Briskin D. P., Poole R. J. Evidence for a beta-Aspartyl Phosphate Residue in the Phosphorylated Intermediate of the Red Beet Plasma Membrane ATPase. Plant Physiol. 1983 Aug;72(4):1133–1135. doi: 10.1104/pp.72.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Briskin D. P., Poole R. J. Plasma membrane ATPase of red beet forms a phosphorylated intermediate. Plant Physiol. 1983 Mar;71(3):507–512. doi: 10.1104/pp.71.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Faller L., Jackson R., Malinowska D., Mukidjam E., Rabon E., Saccomani G., Sachs G., Smolka A. Mechanistic aspects of gastric (H+ + K+)-ATPase. Ann N Y Acad Sci. 1982;402:146–163. doi: 10.1111/j.1749-6632.1982.tb25738.x. [DOI] [PubMed] [Google Scholar]
  9. Gallagher S. R., Leonard R. T. Effect of vanadate, molybdate, and azide on membrane-associated ATPase and soluble phosphatase activities of corn roots. Plant Physiol. 1982 Nov;70(5):1335–1340. doi: 10.1104/pp.70.5.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goffeau A., Amory A., Villalobo A., Dufour J. P. The H+-ATPase of the yeast plasma membrane. Ann N Y Acad Sci. 1982;402:91–98. doi: 10.1111/j.1749-6632.1982.tb25734.x. [DOI] [PubMed] [Google Scholar]
  11. Hymel L., Maurer A., Berenski C., Jung C. Y., Fleischer S. Target size of calcium pump protein from skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1984 Apr 25;259(8):4890–4895. [PubMed] [Google Scholar]
  12. Jørgensen P. L. Mechanism of the Na+, K+ pump. Protein structure and conformations of the pure (Na+ +K+)-ATPase. Biochim Biophys Acta. 1982 Aug 11;694(1):27–68. doi: 10.1016/0304-4157(82)90013-2. [DOI] [PubMed] [Google Scholar]
  13. Kempner E. S., Schlegel W. Size determination of enzymes by radiation inactivation. Anal Biochem. 1979 Jan 1;92(1):2–10. doi: 10.1016/0003-2697(79)90617-1. [DOI] [PubMed] [Google Scholar]
  14. Kepner G. R., Macey R. I. Membrane enzyme systems. Molecular size determinations by radiation inactivation. Biochim Biophys Acta. 1968 Sep 17;163(2):188–203. doi: 10.1016/0005-2736(68)90097-7. [DOI] [PubMed] [Google Scholar]
  15. Minocherhomjee A. M., Beauregard G., Potier M., Roufogalis B. D. The molecular weight of the calcium-transport-ATPase of the human red blood cell determined by radiation inactivation. Biochem Biophys Res Commun. 1983 Nov 15;116(3):895–900. doi: 10.1016/s0006-291x(83)80226-5. [DOI] [PubMed] [Google Scholar]
  16. Nakao M., Nagano K., Nakao T., Mizuno N., Tashima Y., Fujita M., Maeda H., Matsudaira H. Molecular weight of Na, K-ATPase approximated by the radiation inactivation method. Biochem Biophys Res Commun. 1967 Nov 30;29(4):588–592. doi: 10.1016/0006-291x(67)90526-8. [DOI] [PubMed] [Google Scholar]
  17. O'neill S. D., Bennett A. B., Spanswick R. M. Characterization of a NO(3)-Sensitive H-ATPase from Corn Roots. Plant Physiol. 1983 Jul;72(3):837–846. doi: 10.1104/pp.72.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'neill S. D., Spanswick R. M. Effects of vanadate on the plasma membrane ATPase of red beet and corn. Plant Physiol. 1984 Jul;75(3):586–591. doi: 10.1104/pp.75.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ottolenghi P., Ellory J. C. Radiation inactivation of (Na,K)-ATPase, an enzyme showing multiple radiation-sensitive domains. J Biol Chem. 1983 Dec 25;258(24):14895–14907. [PubMed] [Google Scholar]
  20. Periyasamy S. M., Huang W. H., Askari A. Subunit associations of (Na+ + K+)-dependent adenosine triphosphatase. Chemical cross-linking studies. J Biol Chem. 1983 Aug 25;258(16):9878–9885. [PubMed] [Google Scholar]
  21. Peters W. H., Fleuren-Jakobs A. M., Schrijen J. J., De Pont J. J., Bonting S. L. Studies on (K+ + H+)-ATPase V. Chemical composition and molecular weight of the catalytic subunit. Biochim Biophys Acta. 1982 Sep 9;690(2):251–260. doi: 10.1016/0005-2736(82)90329-7. [DOI] [PubMed] [Google Scholar]
  22. Peterson G. L., Hokin L. E. Molecular weight and stoichiometry of the sodium- and potassium-activated adenosine triphosphatase subunits. J Biol Chem. 1981 Apr 25;256(8):3751–3761. [PubMed] [Google Scholar]
  23. Saccomani G., Sachs G., Cuppoletti J., Jung C. Y. Target molecular weight of the gastric (H+ + K+)-ATPase functional and structural molecular size. J Biol Chem. 1981 Aug 10;256(15):7727–7729. [PubMed] [Google Scholar]
  24. Simon P., Swillens S., Dumont J. E. Size determination of an equilibrium enzymic system by radiation inactivation: theoretical considerations. Biochem J. 1982 Sep 1;205(3):477–483. doi: 10.1042/bj2050477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tanford C. Mechanism of free energy coupling in active transport. Annu Rev Biochem. 1983;52:379–409. doi: 10.1146/annurev.bi.52.070183.002115. [DOI] [PubMed] [Google Scholar]
  26. Vara F., Serrano R. Phosphorylated intermediate of the ATPase of plant plasma membranes. J Biol Chem. 1983 May 10;258(9):5334–5336. [PubMed] [Google Scholar]
  27. Verkman A. S., Skorecki K., Ausiello D. A. Radiation inactivation of oligomeric enzyme systems: theoretical considerations. Proc Natl Acad Sci U S A. 1984 Jan;81(1):150–154. doi: 10.1073/pnas.81.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES