Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Oct;70(4):987–993. doi: 10.1104/pp.70.4.987

In Vitro Synthesis of the Chlorophyll Isocyclic Ring 1

Transformation of Magnesium-Protoporphyrin IX and Magnesium-Protoporphyrin IX Monomethyl Ester into Magnesium-2,4-Divinyl Pheoporphyrin A5

Barbara M Chereskin 1, Yum-Shing Wong 1, Paul A Castelfranco 1,2
PMCID: PMC1065812  PMID: 16662656

Abstract

Developing chloroplasts of Cucumis sativus L., cv Beit Alpha which were incubated with either Mg-protoporphyrin IX or Mg-protoporphyrin IX monomethyl ester in darkness produced a partially phototransformable protochlorophyllide species that was tentatively identified as Mg-2,4-divinyl pheoporphyrin a5. S-Adenosylmethionine stimulated Mg-2,4-divinyl pheoporphyrin a5 formation irrespective of the starting material used. In the case of Mg-protoporphyrin IX monomethyl ester, this stimulation was attributed to the need to remethylate substrate that had been hydrolyzed by an endogenous methylesterase which converts part of the added Mg-protoporphyrin IX monomethyl ester to Mg-protoporphyrin IX.

NADP and NADPH stimulated the conversion of Mg-protoporphyrin IX to Mg-2,4-divinyl pheoporphyrin a5. The conversion required oxygen and was half saturated at 50 micromolar dissolved O2. The conversion was insensitive to inhibitors of iron-sulfur and heme-containing proteins, to Cu chelators, H2O2, and peroxide scavengers. However, the conversion was extremely sensitive to phenazine methosulfate, methylene blue, and methyl viologen.

A decrease of the plastids' ability to convert Mg-protoporphyrin IX to Mg-2,4-divinyl pheoporphyrin a5 after lysis in 0.1 molar NaCl suggested a requirement for plastid integrity.

Full text

PDF
992

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belanger F. C., Rebeiz C. A. Chloroplast biogenesis, XXVII. Detection of novel chlorophyll and chlorophyll precursors in higher plants. Biochem Biophys Res Commun. 1979 May 28;88(2):365–371. doi: 10.1016/0006-291x(79)92057-6. [DOI] [PubMed] [Google Scholar]
  2. Belanger F. C., Rebeiz C. A. Chloroplast biogenesis. Detection of divinyl protochlorophyllide in higher plants. J Biol Chem. 1980 Feb 25;255(4):1266–1272. [PubMed] [Google Scholar]
  3. Castelfranco P. A., Weinstein J. D., Schwarcz S., Pardo A. D., Wezelman B. E. The Mg insertion step in chlorophyll biosynthesis. Arch Biochem Biophys. 1979 Feb;192(2):592–598. doi: 10.1016/0003-9861(79)90130-9. [DOI] [PubMed] [Google Scholar]
  4. Chereskin B. M., Castelfranco P. A. Effects of Iron and Oxygen on Chlorophyll Biosynthesis : II. OBSERVATIONS ON THE BIOSYNTHETIC PATHWAY IN ISOLATED ETIOCHLOROPLASTS. Plant Physiol. 1982 Jan;69(1):112–116. doi: 10.1104/pp.69.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ellsworth R. K., Aronoff S. Investigations of the biogenesis of chlorophyll a. IV. Isolation and partial characterization of some biosynthetic intermediates between Mg-protoporphine IX monomethyl ester and Mg-vinylpheoporphine a5, obtained from Chlorella mutants. Arch Biochem Biophys. 1969 Mar;130(1):374–383. doi: 10.1016/0003-9861(69)90047-2. [DOI] [PubMed] [Google Scholar]
  6. Ellsworth R. K., Aronoff S. Investigations on the biogenesis of chlorophyll a. 3. Biosynthesis of Mg-vinylpheoporphine a5 methylester from Mg-protoporphine IX monomethylester as observed in Chlorella mutants. Arch Biochem Biophys. 1968 Apr;125(1):269–277. doi: 10.1016/0003-9861(68)90661-9. [DOI] [PubMed] [Google Scholar]
  7. Foote C. S. Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems. Science. 1968 Nov 29;162(3857):963–970. doi: 10.1126/science.162.3857.963. [DOI] [PubMed] [Google Scholar]
  8. Fuesler T. P., Hanamoto C. M., Castelfranco P. A. Separation of Mg-Protoporphyrin IX and Mg-Protoporphyrin IX Monomethyl Ester Synthesized de novo by Developing Cucumber Etioplasts. Plant Physiol. 1982 Feb;69(2):421–423. doi: 10.1104/pp.69.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GRANICK S. Magnesium protoporphyrin monoester and protoporphyrin monomethyl ester in chlorophyll biosynthesis. J Biol Chem. 1961 Apr;236:1168–1172. [PubMed] [Google Scholar]
  10. GRANICK S. The structural and functional relationships between heme and chlorophyll. Harvey Lect. 1948 1949;Series 44:220–245. [PubMed] [Google Scholar]
  11. Griffiths W. T., Jones O. T. Magnesium 2,4-divinylphaeoporphyrin alpha-5 as a substrate for chlorophyll biosynthesis in vitro. FEBS Lett. 1975 Feb 15;50(3):355–358. doi: 10.1016/0014-5793(75)80526-6. [DOI] [PubMed] [Google Scholar]
  12. Hardy S. I., Castelfranco P. A., Rebeiz C. A. Effect of the hypocotyl hook on greening in etiolated cucumber cotyledons. Plant Physiol. 1970 Nov;46(5):705–707. doi: 10.1104/pp.46.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. JONES O. T. MAGNESIUM 2,4-DIVINYLPHAEOPORPHYRIN A5 MONOMETHYL ESTER, A PROTOCHLOROPHYLL-LIKE PIGMENT PRODUCED BY RHODOPSEUDOMONAS SPHEROIDES. Biochem J. 1963 Nov;89:182–189. doi: 10.1042/bj0890182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. JONES O. T. THE INHIBITION OF BACTERIOCHLOROPHYLL BIOSYNTHESIS IN RHODOPSEUDOMONAS SPHEROIDES BY 8-HYDROXYQUINOLINE. Biochem J. 1963 Aug;88:335–343. doi: 10.1042/bj0880335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones O. T. A protein-protochlorophyll complex obtained from inner seed coats of Cucurbita pepo. The resolution of its two pigment groups into true protochlorophyll and a pigment related to bacterial protochlorophyll. Biochem J. 1966 Oct;101(1):153–160. doi: 10.1042/bj1010153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laasch N., Kaiser W., Urbach W. Effects of disalicylidenepropanediamines on photosynthetic electron transport of isolated spinach chloroplasts. Plant Physiol. 1979 Apr;63(4):605–608. doi: 10.1104/pp.63.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MANN P. J. Purification and properties of the amine oxidase of pea seedlings. Biochem J. 1955 Apr;59(4):609–620. doi: 10.1042/bj0590609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mattheis J. R., Rebeiz C. A. Chloroplast biogenesis. Net synthesis of protochlorophyllide from magnesium-protoporphyrin monoester by developing chloroplasts. J Biol Chem. 1977 Jun 25;252(12):4022–4024. [PubMed] [Google Scholar]
  19. Mattheis J. R., Rebeiz C. A. Chloroplast biogenesis. Net synthesis of protochlorophyllide from protoporphyrin IX by developing chloroplasts. J Biol Chem. 1977 Dec 10;252(23):8347–8349. [PubMed] [Google Scholar]
  20. Pardo A. D., Chereskin B. M., Castelfranco P. A., Franceschi V. R., Wezelman B. E. ATP requirement for mg chelatase in developing chloroplasts. Plant Physiol. 1980 May;65(5):956–960. doi: 10.1104/pp.65.5.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pradel J., Clement-Metral J. D. A 4-vinylprotochlorophyllide complex accumulated by "phofil" mutant of Rhodopseudomonas spheroides. An authentic intermediate in the development of the photosynthetic apparatus. Biochim Biophys Acta. 1976 May 14;430(2):253–264. doi: 10.1016/0005-2728(76)90083-9. [DOI] [PubMed] [Google Scholar]
  22. Rebeiz C. A., Castelfranco P. A. Protochlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol. 1971 Jan;47(1):24–32. doi: 10.1104/pp.47.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shine W. E., Stumpf P. K. Fat metabolism in higher plants. Recent studies on plant alpha-oxidation systems. Arch Biochem Biophys. 1974 May;162(1):147–157. doi: 10.1016/0003-9861(74)90113-1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES