Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Nov;70(5):1554–1561. doi: 10.1104/pp.70.5.1554

Localization of Filipin-Sterol Complexes in the Membranes of Beta vulgaris Roots and Spinacia oleracea Chloroplasts 1

Curt H Moeller 1,2, J Brian Mudd 1,2
PMCID: PMC1065924  PMID: 16662716

Abstract

Filipin was used as a cytochemical probe for membrane sterols in the root storage tissue of the red beet Beta vulgaris L. and the chloroplasts of Spinacia oleracea L. In unfixed beet tissue, filipin lysed the cells. Freeze-fracture replicas revealed that the filipin-sterol complexes were tightly aggregated in the plasma membrane, while in thin section the complexes corrugated the plasma membrane. If the cells were fixed with glutaraldehyde prior to the filipin treatment, the cell structure was preserved. Filipin-induced lesions were dispersed or clustered loosely in the plasma membrane. A few filipin-sterol complexes were observed in the tonoplast. In spinach chloroplasts, filipin-sterol complexes were limited to the outer membrane of the envelope and were not found in the inner membrane of the envelope or in the lamellar membranes. If the filipin-sterol complexes accurately mapped the distribution of membrane sterols, then sterol was located predominantly in the plasma membrane of the red beet and in the outer membrane of the chloroplast envelope. Furthermore, the sterol may be heterogenously distributed laterally in both these membranes.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alroy J., Merk F. B., Goyal V., Ucci A. Heterogeneous distribution of filipin-sterol complexes in nuclear membranes. Biochim Biophys Acta. 1981 Dec 7;649(2):239–243. doi: 10.1016/0005-2736(81)90411-9. [DOI] [PubMed] [Google Scholar]
  2. Andrews L. D., Cohen A. I. Freeze-fracture evidence for the presence of cholesterol in particle-free patches of basal disks and the plasma membrane of retinal rod outer segments of mice and frogs. J Cell Biol. 1979 Apr;81(1):215–228. doi: 10.1083/jcb.81.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bishop D. G. Inhibition of photochemical activity in chloroplasts by the polyene antibiotic, filipin. Arch Biochem Biophys. 1973 Feb;154(2):520–526. doi: 10.1016/0003-9861(73)90004-0. [DOI] [PubMed] [Google Scholar]
  4. Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
  5. Cline K., Andrews J., Mersey B., Newcomb E. H., Keegstra K. Separation and characterization of inner and outer envelope membranes of pea chloroplasts. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3595–3599. doi: 10.1073/pnas.78.6.3595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Demel R. A., De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976 Oct 26;457(2):109–132. doi: 10.1016/0304-4157(76)90008-3. [DOI] [PubMed] [Google Scholar]
  7. Dubacq J. P., Kader J. C. Free flow electrophoresis of chloroplasts. Plant Physiol. 1978 Mar;61(3):465–468. doi: 10.1104/pp.61.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elias P. M., Friend D. S., Goerke J. Membrane sterol heterogeneity. Freeze-fracture detection with saponins and filipin. J Histochem Cytochem. 1979 Sep;27(9):1247–1260. doi: 10.1177/27.9.479568. [DOI] [PubMed] [Google Scholar]
  9. Fujita H., Ishimura K., Matsuda H. Freeze-fracture images on filipin-sterol complexes in the thyroid follicle epithelial cell of mice with special regard to absence of cholesterol at the site of micropinocytosis. Histochemistry. 1981;73(1):57–63. doi: 10.1007/BF00493133. [DOI] [PubMed] [Google Scholar]
  10. Higgins J. A., Florendo N. T., Barrnett R. J. Localization of cholesterol in membranes of erythrocyte ghosts. J Ultrastruct Res. 1973 Jan;42(1):66–81. doi: 10.1016/s0022-5320(73)80006-1. [DOI] [PubMed] [Google Scholar]
  11. Kitajima Y., Sekiya T., Nozawa Y. Freeze-fracture ultrastructural alterations induced by filipin, pimaricin, nystatin and amphotericin B in the plasmia membranes of Epidermophyton, Saccharomyces and red complex-induced membrane lesions. Biochim Biophys Acta. 1976 Dec 2;455(2):452–465. doi: 10.1016/0005-2736(76)90317-5. [DOI] [PubMed] [Google Scholar]
  12. MURPHY J. R. ERYTHROCYTE METABOLISM. VI. CELL SHAPE AND THE LOCATION OF CHOLESTEROL IN THE ERYTHROCYTE MEMBRANE. J Lab Clin Med. 1965 May;65:756–774. [PubMed] [Google Scholar]
  13. Marty F., Branton D. Analytical characterization of beetroot vacuole membrane. J Cell Biol. 1980 Oct;87(1):72–83. doi: 10.1083/jcb.87.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Montesano R. Inhomogeneous distribution of filipin-sterol complexes in smooth muscle cell plasma membrane. Nature. 1979 Jul 26;280(5720):328–329. doi: 10.1038/280328a0. [DOI] [PubMed] [Google Scholar]
  15. Montesano R., Perrelet A., Vassalli P., Orci L. Absence of filipin-sterol complexes from large coated pits on the surface of culture cells. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6391–6395. doi: 10.1073/pnas.76.12.6391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Montesano R., Vassalli P., Orci L. Structural heterogeneity of endocytic membranes in macrophages as revealed by the cholesterol probe, filipin. J Cell Sci. 1981 Oct;51:95–107. doi: 10.1242/jcs.51.1.95. [DOI] [PubMed] [Google Scholar]
  17. Mudd J. B., Dezacks R. Synthesis of phosphatidylglycerol by chloroplasts from leaves of Spinacia oleracea L. (spinach). Arch Biochem Biophys. 1981 Jul;209(2):584–591. doi: 10.1016/0003-9861(81)90316-7. [DOI] [PubMed] [Google Scholar]
  18. Mudd J. B., Kleinschmidt M. G. Effect of filipin on the permeability of red beet and potato tuber discs. Plant Physiol. 1970 Apr;45(4):517–518. doi: 10.1104/pp.45.4.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakajima Y., Bridgman P. C. Absence of filipin-sterol complexes from the membranes of active zones and acetylcholine receptor aggregates at frog neuromuscular junctions. J Cell Biol. 1981 Feb;88(2):453–458. doi: 10.1083/jcb.88.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Norman A. W., Spielvogel A. M., Wong R. G. Polyene antibiotic - sterol interaction. Adv Lipid Res. 1976;14:127–170. [PubMed] [Google Scholar]
  21. Orci L., Miller R. G., Montesano R., Perrelet A., Amherdt M., Vassalli P. Opposite polarity of filipin-induced deformations in the membrane of condensing vacuoles and zymogen granules. Science. 1980 Nov 28;210(4473):1019–1021. doi: 10.1126/science.7434010. [DOI] [PubMed] [Google Scholar]
  22. Orci L., Montesano R., Brown D. Heterogeneity of toad bladder granular cell luminal membranes. Distribution of filipin-sterol complexes in freeze-fracture. Biochim Biophys Acta. 1980 Oct 2;601(3):443–452. doi: 10.1016/0005-2736(80)90548-9. [DOI] [PubMed] [Google Scholar]
  23. Orci L., Montesano R., Meda P., Malaisse-Lagae F., Brown D., Perrelet A., Vassalli P. Heterogeneous distribution of filipin--cholesterol complexes across the cisternae of the Golgi apparatus. Proc Natl Acad Sci U S A. 1981 Jan;78(1):293–297. doi: 10.1073/pnas.78.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Poincelot R. P. Lipid and Fatty Acid composition of chloroplast envelope membranes from species with differing net photosynthesis. Plant Physiol. 1976 Oct;58(4):595–598. doi: 10.1104/pp.58.4.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Robenek H., Greven H. Freeze-fracture evidence for high cholesterol content in nuclear membranes of a larval urodelan epidermis. Eur J Cell Biol. 1981 Aug;25(1):131–135. [PubMed] [Google Scholar]
  27. Robenek H., Melkonian M. Sterol-deficient domains correlate with intramembrane particle arrays in the plasma membrane of Chlamydomonas reinhardii. Eur J Cell Biol. 1981 Oct;25(2):258–264. [PubMed] [Google Scholar]
  28. Robinson J. M., Karnovsky M. J. Evaluation of the polyene antibiotic filipin as a cytochemical probe for membrane cholesterol. J Histochem Cytochem. 1980 Feb;28(2):161–168. doi: 10.1177/28.2.6766487. [DOI] [PubMed] [Google Scholar]
  29. Sekiya T., Kitajima Y., Nozawa Y. Effects of lipid-phase separation on the filipin action on membranes of ergosterol-replaced Tetrahymena cells, as studied by freeze-fracture electron microscopy. Biochim Biophys Acta. 1979 Jan 19;550(2):269–278. doi: 10.1016/0005-2736(79)90213-x. [DOI] [PubMed] [Google Scholar]
  30. Severs N. J. Plasma membrane cholesterol in myocardial muscle and capillary endothelial cells. Distribution of filipin-induced deformations in freeze-fracture. Eur J Cell Biol. 1981 Oct;25(2):289–299. [PubMed] [Google Scholar]
  31. Tillack T. W., Kinsky S. C. A freeze-etch study of the effects of filipin on liposomes and human erythrocyte membranes. Biochim Biophys Acta. 1973 Sep 27;323(1):43–54. doi: 10.1016/0005-2736(73)90430-6. [DOI] [PubMed] [Google Scholar]
  32. Whatley J. M. Chloroplast evolution--ancient and modern. Ann N Y Acad Sci. 1981;361:154–165. doi: 10.1111/j.1749-6632.1981.tb46517.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES