Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1983 Jan;71(1):145–149. doi: 10.1104/pp.71.1.145

Nitrate Reductase-Deficient Mutants in Barley 1

Immunoelectrophoretic Characterization

David A Somers 1, Tsung-Min Kuo 1,2, Andris Kleinhofs 1,3, Robert L Warner 1
PMCID: PMC1066002  PMID: 16662774

Abstract

Nitrate reductase-deficient barley (Hordeum vulgare L.) mutants were assayed for the presence of a functional molybdenum cofactor determined from the activity of the molybdoenzyme, xanthine dehydrogenase, and for nitrate reductase-associated activities. Rocket immunoelectrophoresis was used to detect nitrate reductase cross-reacting material in the mutants. The cross-reacting material levels of the mutants ranged from 8 to 136% of the wild type and were correlated with their nitrate reductase-associated activities, except for nar 1c, which lacked all associated nitrate reductase activities but had 38% of the wild-type cross-reacting material. The cross-reacting material of two nar 1 mutants, as well as nar 2a, Xno 18, Xno 19, and Xno 29, exhibited rocket immunoprecipitates that were similar to the wild-type enzyme indicating structural homology between the mutant and wild-type nitrate reductase proteins. The cross-reacting materials of the seven remaining nar 1 alleles formed rockets only in the presence of purified wild-type nitrate reductase, suggesting structural modifications of the mutant cross-reacting materials. All nar 1 alleles and Xno 29 had xanthine dehydrogenase activity indicating the presence of functional molybdenum cofactors. These results suggest that nar 1 is the structural gene for nitrate reductase. Mutants nar 2a, Xno 18, and Xno 19 lacked xanthine dehydrogenase activity and are considered to be molybdenum cofactor deficient mutants. Cross-reacting material was not detected in uninduced wild-type or mutant extracts, suggesting that nitrate reductase is synthesized de novo in response to nitrate.

Full text

PDF
148

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amy N. K., Garrett R. H. Immunoelectrophoretic determination of nitrate reductase in Neurospora crassa. Anal Biochem. 1979 May;95(1):97–107. doi: 10.1016/0003-2697(79)90191-x. [DOI] [PubMed] [Google Scholar]
  2. Cove D. J. Genetic studies of nitrate assimilation in Aspergillus nidulans. Biol Rev Camb Philos Soc. 1979 Aug;54(3):291–327. doi: 10.1111/j.1469-185x.1979.tb01014.x. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. Dailey F. A., Warner R. L., Somers D. A., Kleinhofs A. Characteristics of a Nitrate Reductase in a Barley Mutant Deficient in NADH Nitrate Reductase. Plant Physiol. 1982 May;69(5):1200–1204. doi: 10.1104/pp.69.5.1200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Funkhouser E. A. Synthesis of Nitrate Reductase in Chlorella: II. EVIDENCE FOR SYNTHESIS IN AMMONIA-GROWN CELLS. Plant Physiol. 1980 May;65(5):944–948. doi: 10.1104/pp.65.5.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Garrett R. H., Amy N. K. Nitrate assimilation in fungi. Adv Microb Physiol. 1978;18:1–65. doi: 10.1016/s0065-2911(08)60414-2. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Lund K., DeMoss J. A. Association-dissociation behavior and subunit structure of heat-released nitrate reductase from Escherichia coli. J Biol Chem. 1976 Apr 25;251(8):2207–2216. [PubMed] [Google Scholar]
  9. PATEMAN J. A., COVE D. J., REVER B. M., ROBERTS D. B. A COMMON CO-FACTOR FOR NITRATE REDUCTASE AND XANTHINE DEHYDROGENASE WHICH ALSO REGULATES THE SYNTHESIS OF NITRATE REDUCTASE. Nature. 1964 Jan 4;201:58–60. doi: 10.1038/201058a0. [DOI] [PubMed] [Google Scholar]
  10. Tomsett A. B., Garrett R. H. Biochemical analysis of mutants defective in nitrate assimilation in Neurospora crassa: evidence for autogenous control by nitrate reductase. Mol Gen Genet. 1981;184(2):183–190. doi: 10.1007/BF00272903. [DOI] [PubMed] [Google Scholar]
  11. Wray J. L., Filner P. Structural and functional relationships of enzyme activities induced by nitrate in barley. Biochem J. 1970 Oct;119(4):715–725. doi: 10.1042/bj1190715. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES