Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1983 May;72(1):259–261. doi: 10.1104/pp.72.1.259

Leaf Cytosolic Fructose-1,6-bisphosphatase 1

A Potential Target Site in Low Temperature Stress

Norman F Weeden 1,2, Bob B Buchanan 1
PMCID: PMC1066206  PMID: 16662972

Abstract

Leaf cytosolic fructose-1,6-bisphosphatase (FBPase), partially purified from both spinach (Spinacia oleracea, var Hipack) and peas (Pisum sativum, var Progress No. 9), is reversibly inactivated by exposure to low temperature. Thus, even though assays were conducted at 22°C, samples incubated at 0 to 12°C had greatly reduced activity relative to controls maintained at 22°C. Following incubation at 22°C prior to assay, the inactivated samples regained their initial activity. Chloroplast FBPase, by contrast, was unaffected by low temperature treatment. This feature as well as lack of a response of cytosolic FBPase to thioredoxins f or cf and to chloroplast FBPase antibody indicate that the FBPase isozymes of leaves are different proteins.

Full text

PDF
260

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchanan R. B., Schfürmann P., Wolosiuk R. A. Appearance of sedoheptulose 1,7-diphosphatase activity on conversion of chloroplast fructose 1,6-diphosphatase from dimer form to monomer form. Biochem Biophys Res Commun. 1976 Apr 19;69(4):970–978. doi: 10.1016/0006-291x(76)90468-x. [DOI] [PubMed] [Google Scholar]
  2. Cséke C., Weeden N. F., Buchanan B. B., Uyeda K. A special fructose bisphosphate functions as a cytoplasmic regulatory metabolite in green leaves. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4322–4326. doi: 10.1073/pnas.79.14.4322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Harbron S., Foyer C., Walker D. The purification and properties of sucrose-phosphate synthetase from spinach leaves: the involvement of this enzyme and fructose bisphosphatase in the regulation of sucrose biosynthesis. Arch Biochem Biophys. 1981 Nov;212(1):237–246. doi: 10.1016/0003-9861(81)90363-5. [DOI] [PubMed] [Google Scholar]
  4. Kalberer P. P., Buchanan B. B., Arnon D. I. Rates of photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1542–1549. doi: 10.1073/pnas.57.6.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kawashima N., Singh S., Wildman S. G. Reversible cold inactivation and heat reactivation of RuDP carboxylase activity of crystallized tobacco fraction I protein. Biochem Biophys Res Commun. 1971 Feb 19;42(4):664–668. doi: 10.1016/0006-291x(71)90539-0. [DOI] [PubMed] [Google Scholar]
  6. Prusiner S., Davis J. N., Stadtman E. R. Regulation of glutaminase B in Escherichia coli. I. Purification, properties, and cold lability. J Biol Chem. 1976 Jun 10;251(11):3447–3456. [PubMed] [Google Scholar]
  7. Shaw C. R., Prasad R. Starch gel electrophoresis of enzymes--a compilation of recipes. Biochem Genet. 1970 Apr;4(2):297–320. doi: 10.1007/BF00485780. [DOI] [PubMed] [Google Scholar]
  8. Wolosiuk R. A., Crawford N. A., Yee B. C., Buchanan B. B. Isolation of three thioredoxins from spinach leaves. J Biol Chem. 1979 Mar 10;254(5):1627–1632. [PubMed] [Google Scholar]
  9. Zimmermann G., Kelly G. J., Latzko E. Purification and properties of spinach leaf cytoplasmic fructose-1,6-bisphosphatase. J Biol Chem. 1978 Sep 10;253(17):5952–5956. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES