Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Feb;74(2):451–454. doi: 10.1104/pp.74.2.451

Effective Absorption Cross-Sections in Porphyridium cruentum1

Implications for Energy Transfer between Phycobilisomes and Photosystem II Reaction Centers

Arthur C Ley 1
PMCID: PMC1066702  PMID: 16663442

Abstract

Effective absorption cross-sections for O2 production by Porphyridium cruentum were measured at 546 and 596 nanometers. Although all photosystem II reaction centers are energetically coupled to phycobilisomes, any single phycobilisome acts as antenna for several photosystem II reaction centers. The cross-section measured in state I was 50% larger than that measured in state II.

Full text

PDF
454

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Diner B. A. Energy Transfer from the Phycobilisomes to Photosystem II Reaction Centers in Wild Type Cyanidium caldarium. Plant Physiol. 1979 Jan;63(1):30–34. doi: 10.1104/pp.63.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Diner B. A., Wollman F. A. Functional Comparison of the Photosystem II Center-Antenna Complex of a Phycocyanin-less Mutant of Cyanidium caldarium with That of Chlorella pyrenoidosa. Plant Physiol. 1979 Jan;63(1):20–25. doi: 10.1104/pp.63.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gantt E., Lipschultz C. A. Phycobilisomes of Porphyridium cruentum: pigment analysis. Biochemistry. 1974 Jul 2;13(14):2960–2966. doi: 10.1021/bi00711a027. [DOI] [PubMed] [Google Scholar]
  4. Gantt E., Lipschultz C. A., Zilinskas B. Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy. Biochim Biophys Acta. 1976 May 14;430(2):375–388. doi: 10.1016/0005-2728(76)90093-1. [DOI] [PubMed] [Google Scholar]
  5. Kursar T. A., Alberte R. S. Photosynthetic Unit Organization in a Red Alga : Relationships between Light-Harvesting Pigments and Reaction Centers. Plant Physiol. 1983 Jun;72(2):409–414. doi: 10.1104/pp.72.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ley A. C., Butler W. L. Effects of Chromatic Adaptation on the Photochemical Apparatus of Photosynthesis in Porphyridium cruentum. Plant Physiol. 1980 Apr;65(4):714–722. doi: 10.1104/pp.65.4.714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ley A. C., Butler W. L. Energy distribution in the photochemical apparatus of Porphyridium cruentum in state I and state II. Biochim Biophys Acta. 1980 Sep 5;592(2):349–363. doi: 10.1016/0005-2728(80)90195-4. [DOI] [PubMed] [Google Scholar]
  8. Mimuro M., Fujita Y. Excitation energy transfer between pigment system II units in blue-green algae. Biochim Biophys Acta. 1978 Dec 7;504(3):406–406. doi: 10.1016/0005-2728(78)90063-4. [DOI] [PubMed] [Google Scholar]
  9. Murata N. Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta. 1969 Feb 25;172(2):242–251. doi: 10.1016/0005-2728(69)90067-x. [DOI] [PubMed] [Google Scholar]
  10. PROVASOLI L., MCLAUGHLIN J. J., DROOP M. R. The development of artificial media for marine algae. Arch Mikrobiol. 1957;25(4):392–428. doi: 10.1007/BF00446694. [DOI] [PubMed] [Google Scholar]
  11. Ried A., Reinhardt B. Distribution of excitation energy between photosystem I and photosystem II in red algae. II. Kinetics of the transition between state 1 and state 2. Biochim Biophys Acta. 1977 Apr 11;460(1):25–35. doi: 10.1016/0005-2728(77)90148-7. [DOI] [PubMed] [Google Scholar]
  12. Wollman F. A. Ultrastructural Comparison of Cyanidium caldarium Wild Type and III-C Mutant Lacking Phycobilisomes. Plant Physiol. 1979 Feb;63(2):375–381. doi: 10.1104/pp.63.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES