Abstract
A comparative study of the spectral sensitivity of anthocyanin production in dark-grown and light-pretreated systems was carried out in Brassica oleracea L., Lycopersicon esculentum Mill., Secale cereale L. and Spirodela polyrrhiza L. Light pretreatments bring about an enhancement of the inductive, red-far red reversible response in all systems, a decrease of the continuous irradiation response in cabbage, rye, and tomato seedlings, and an enhancement of the continuous irradiation response in cabbage leaf disks. Light pretreatments also bring about a marked change in the spectral sensitivity of the continuous irradiation response. The different effect of light pretreatments on the photosensitivity of the response to short and long wavelength irradiations suggests that two photoreceptors, phytochrome and cryptochrome, may be involved in the photoregulation of anthocyanin production.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beggs C. J., Holmes M. G., Jabben M., Schäfer E. Action Spectra for the Inhibition of Hypocotyl Growth by Continuous Irradiation in Light and Dark-Grown Sinapis alba L. Seedlings. Plant Physiol. 1980 Oct;66(4):615–618. doi: 10.1104/pp.66.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downs R. J., Siegelman H. W. Photocontrol of Anthocyanin Synthesis in Milo Seedlings. Plant Physiol. 1963 Jan;38(1):25–30. doi: 10.1104/pp.38.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drumm H., Wildermann A., Mohr H. The 'high-irradiance response' in anthocyanin formation as related to the phytochrome level. Photochem Photobiol. 1975 Apr;21(4):269–273. doi: 10.1111/j.1751-1097.1975.tb06668.x. [DOI] [PubMed] [Google Scholar]
- Jabben M., Deitzer G. F. Effects of the herbicide san 9789 on photomorphogenic responses. Plant Physiol. 1979 Mar;63(3):481–485. doi: 10.1104/pp.63.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mancinelli A. L., Walsh L. Photocontrol of Anthocyanin Synthesis: VII. Factors Affecting the Spectral Sensitivity of Anthocyanin Synthesis in Young Seedlings. Plant Physiol. 1979 May;63(5):841–846. doi: 10.1104/pp.63.5.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mancinelli A. L., Yang C. P., Lindquist P., Anderson O. R., Rabino I. Photocontrol of Anthocyanin Synthesis: III. The Action of Streptomycin on the Synthesis of Chlorophyll and Anthocyanin. Plant Physiol. 1975 Feb;55(2):251–257. doi: 10.1104/pp.55.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegelman H. W., Hendricks S. B. Photocontrol of Anthocyanin Formation in Turnip and Red Cabbage Seedlings. Plant Physiol. 1957 Sep;32(5):393–398. doi: 10.1104/pp.32.5.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegelman H. W., Hendricks S. B. Photocontrol of Anthocyanin Synthesis in Apple Skin. Plant Physiol. 1958 May;33(3):185–190. doi: 10.1104/pp.33.3.185. [DOI] [PMC free article] [PubMed] [Google Scholar]