Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Jul;75(3):582–585. doi: 10.1104/pp.75.3.582

A Highly Sensitive, Flow Through H2 Gas Analyzer for Use in Nitrogen Fixation Studies 1

David B Layzell 1, Glenn E Weagle 1, David T Canvin 1
PMCID: PMC1066958  PMID: 16663669

Abstract

Studies of H2 evolution by N2 fixing systems are frequently limited by an inability to accurately measure H2 gas concentrations of less than about 10 microliters per liter. In this study, a H2 gas analyzer is described which is able to accurately and reproducibly detect up to 100 times lower H2 concentrations than most thermal conductivity gas chromatographs or other conventional instruments used for the measurement of H2 gas. This high level of sensitivity (maximum of about 0.02 microliter per liter H2 per millivolt output) and the ability to continuously monitor H2 concentration directly in a flowing gas stream, makes this instrument well suited for use in an open gas exchange system.

Since the sensor used in the instrument was also sensitive to other combustible gases, it was necessary to demonstrate that H2 was the only combustible gas produced by the N2 fixing system being studied. When an air stream was passed through a pot containing nodulated soybean (Glycine max L.) roots, gas chromatographic analysis of the effluent gas stream revealed that H2 was the only combustible gas present. These results were supported by other studies in which no combustible gases were detected in the effluent gas stream from soybean roots nodulated with USDA 110, a Rhizobium strain which displays active uptake hydrogenase activity.

Full text

PDF
584

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Christman N. T., Hamilton L. H. A new chromatographic instrument for measuring trace concentrations of breath-hydrogen. J Chromatogr. 1982 May 14;229(2):259–265. doi: 10.1016/s0378-4347(00)84268-1. [DOI] [PubMed] [Google Scholar]
  2. Mallard T. M., Mallard C. S., Holfeld H. S., LaRue T. A. Portable gas chromatograph for the acetylene reduction assay for nitrogenase. Anal Chem. 1977 Jul;49(8):1275–1277. doi: 10.1021/ac50016a057. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES